结合组件模型进行现场工作流自动调优

Tong Shu, Yanfei Guo, J. Wozniak, Xiaoning Ding, Ian T Foster, T. Kurç
{"title":"结合组件模型进行现场工作流自动调优","authors":"Tong Shu, Yanfei Guo, J. Wozniak, Xiaoning Ding, Ian T Foster, T. Kurç","doi":"10.1145/3437801.3441615","DOIUrl":null,"url":null,"abstract":"In-situ parallel workflows couple multiple component applications via streaming data transfer to avoid data exchange via shared file systems. Such workflows are challenging to configure for optimal performance due to the huge space of possible configurations. Here, we propose an in-situ workflow auto-tuning method, ALIC, which integrates machine learning techniques with knowledge of in-situ workflow structures to enable automated workflow configuration with a limited number of performance measurements. Experiments with real applications show that ALIC identify better configurations than existing methods given a computer time budget.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"In-situ workflow auto-tuning through combining component models\",\"authors\":\"Tong Shu, Yanfei Guo, J. Wozniak, Xiaoning Ding, Ian T Foster, T. Kurç\",\"doi\":\"10.1145/3437801.3441615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-situ parallel workflows couple multiple component applications via streaming data transfer to avoid data exchange via shared file systems. Such workflows are challenging to configure for optimal performance due to the huge space of possible configurations. Here, we propose an in-situ workflow auto-tuning method, ALIC, which integrates machine learning techniques with knowledge of in-situ workflow structures to enable automated workflow configuration with a limited number of performance measurements. Experiments with real applications show that ALIC identify better configurations than existing methods given a computer time budget.\",\"PeriodicalId\":124852,\"journal\":{\"name\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437801.3441615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

原位并行工作流通过流数据传输来耦合多个组件应用程序,以避免通过共享文件系统进行数据交换。由于可能的配置空间巨大,这种工作流很难配置以获得最佳性能。在这里,我们提出了一种原位工作流自动调优方法ALIC,它将机器学习技术与原位工作流结构的知识相结合,以实现具有有限数量性能测量的自动化工作流配置。实际应用的实验表明,在给定计算机时间预算的情况下,ALIC识别出比现有方法更好的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ workflow auto-tuning through combining component models
In-situ parallel workflows couple multiple component applications via streaming data transfer to avoid data exchange via shared file systems. Such workflows are challenging to configure for optimal performance due to the huge space of possible configurations. Here, we propose an in-situ workflow auto-tuning method, ALIC, which integrates machine learning techniques with knowledge of in-situ workflow structures to enable automated workflow configuration with a limited number of performance measurements. Experiments with real applications show that ALIC identify better configurations than existing methods given a computer time budget.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信