{"title":"弹流体动力点接触油膜厚度和压力分布","authors":"A. Mostofi, R. Gohar","doi":"10.1243/JMES_JOUR_1982_024_034_02","DOIUrl":null,"url":null,"abstract":"In this paper, a general numerical solution to the elastohydrodynamic point contact problem is presented for moderate loads and material parameters. Isobars, contours and regression formulae describe how pressure and oil film thickness vary with geometry, material properties, load, and squeeze velocity, when the rolling velocity vector is at various angles to the static contact ellipse long axis. In addition, the EHL behaviour under spin is examined. The theoretical predictions of film thickness compare favourably with other numerical solutions to the point contact problem, as well as with experimental results which use the optical interferometry method to find film thickness and","PeriodicalId":114598,"journal":{"name":"Archive: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Oil Film Thickness and Pressure Distribution in Elastohydrodynamic Point Contacts\",\"authors\":\"A. Mostofi, R. Gohar\",\"doi\":\"10.1243/JMES_JOUR_1982_024_034_02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a general numerical solution to the elastohydrodynamic point contact problem is presented for moderate loads and material parameters. Isobars, contours and regression formulae describe how pressure and oil film thickness vary with geometry, material properties, load, and squeeze velocity, when the rolling velocity vector is at various angles to the static contact ellipse long axis. In addition, the EHL behaviour under spin is examined. The theoretical predictions of film thickness compare favourably with other numerical solutions to the point contact problem, as well as with experimental results which use the optical interferometry method to find film thickness and\",\"PeriodicalId\":114598,\"journal\":{\"name\":\"Archive: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1243/JMES_JOUR_1982_024_034_02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1243/JMES_JOUR_1982_024_034_02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oil Film Thickness and Pressure Distribution in Elastohydrodynamic Point Contacts
In this paper, a general numerical solution to the elastohydrodynamic point contact problem is presented for moderate loads and material parameters. Isobars, contours and regression formulae describe how pressure and oil film thickness vary with geometry, material properties, load, and squeeze velocity, when the rolling velocity vector is at various angles to the static contact ellipse long axis. In addition, the EHL behaviour under spin is examined. The theoretical predictions of film thickness compare favourably with other numerical solutions to the point contact problem, as well as with experimental results which use the optical interferometry method to find film thickness and