{"title":"拉格朗日-赫米特型插值过程","authors":"G. Mastroianni, G. Milovanović, I. Notarangelo","doi":"10.2298/PIM1205163M","DOIUrl":null,"url":null,"abstract":"We consider a Lagrange-Hermite polynomial, interpolating a func- tion at the Jacobi zeros and, with its first (r 1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L p -spaces, 1 < p < 1, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ±1. Moreover, we give optimal estimates for the error of this process also in the weighted uniform metric.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On an interpolation process of Lagrange-Hermite type\",\"authors\":\"G. Mastroianni, G. Milovanović, I. Notarangelo\",\"doi\":\"10.2298/PIM1205163M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Lagrange-Hermite polynomial, interpolating a func- tion at the Jacobi zeros and, with its first (r 1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L p -spaces, 1 < p < 1, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ±1. Moreover, we give optimal estimates for the error of this process also in the weighted uniform metric.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"2004 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1205163M\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1205163M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
我们考虑一个拉格朗日-埃尔米特多项式,在雅可比零点处插值一个函数,并在±1点处插值它的一阶导数(r 1)。在适当的加权L p -空间中,1 < p < 1,给出了相关算子一致有界权的充分必要条件,证明了一个涉及多项式在±1处导数的Marcinkiewicz不等式。此外,我们还在加权一致度量下给出了该过程误差的最优估计。
On an interpolation process of Lagrange-Hermite type
We consider a Lagrange-Hermite polynomial, interpolating a func- tion at the Jacobi zeros and, with its first (r 1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L p -spaces, 1 < p < 1, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ±1. Moreover, we give optimal estimates for the error of this process also in the weighted uniform metric.