拉格朗日-赫米特型插值过程

G. Mastroianni, G. Milovanović, I. Notarangelo
{"title":"拉格朗日-赫米特型插值过程","authors":"G. Mastroianni, G. Milovanović, I. Notarangelo","doi":"10.2298/PIM1205163M","DOIUrl":null,"url":null,"abstract":"We consider a Lagrange-Hermite polynomial, interpolating a func- tion at the Jacobi zeros and, with its first (r 1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L p -spaces, 1 < p < 1, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ±1. Moreover, we give optimal estimates for the error of this process also in the weighted uniform metric.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On an interpolation process of Lagrange-Hermite type\",\"authors\":\"G. Mastroianni, G. Milovanović, I. Notarangelo\",\"doi\":\"10.2298/PIM1205163M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Lagrange-Hermite polynomial, interpolating a func- tion at the Jacobi zeros and, with its first (r 1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L p -spaces, 1 < p < 1, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ±1. Moreover, we give optimal estimates for the error of this process also in the weighted uniform metric.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"2004 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1205163M\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1205163M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑一个拉格朗日-埃尔米特多项式,在雅可比零点处插值一个函数,并在±1点处插值它的一阶导数(r 1)。在适当的加权L p -空间中,1 < p < 1,给出了相关算子一致有界权的充分必要条件,证明了一个涉及多项式在±1处导数的Marcinkiewicz不等式。此外,我们还在加权一致度量下给出了该过程误差的最优估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an interpolation process of Lagrange-Hermite type
We consider a Lagrange-Hermite polynomial, interpolating a func- tion at the Jacobi zeros and, with its first (r 1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L p -spaces, 1 < p < 1, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ±1. Moreover, we give optimal estimates for the error of this process also in the weighted uniform metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信