使用有限状态机从上下文和手臂姿势识别活动

Thiago Teixeira, Deokwoo Jung, G. Dublon, A. Savvides
{"title":"使用有限状态机从上下文和手臂姿势识别活动","authors":"Thiago Teixeira, Deokwoo Jung, G. Dublon, A. Savvides","doi":"10.1109/ICDSC.2009.5289370","DOIUrl":null,"url":null,"abstract":"We present an activity-recognition system for assisted living applications and smart homes. While existing systems tend to rely on expensive computation of comparatively largedimension data sets, ours leverages information from a small number of fundamentally different sensor measurements that provide context information pertaining the person's location, and action information by observing the motion of the body and arms. Camera nodes are placed on the ceiling to track people in the environment, and place them in the context of a building map where areas and objects of interest are premarked. Additionally, a single inertial sensor node is placed on the subject's arm to infer arm pose, heading and motion frequency using an accelerometer, gyroscope and magnetometer. These four measurements are parsed using a lightweight hierarchy of finite state machines, yielding recognition rates with high precision and recall values (0.92 and 0.93, respectively).","PeriodicalId":324810,"journal":{"name":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Recognizing activities from context and arm pose using finite state machines\",\"authors\":\"Thiago Teixeira, Deokwoo Jung, G. Dublon, A. Savvides\",\"doi\":\"10.1109/ICDSC.2009.5289370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an activity-recognition system for assisted living applications and smart homes. While existing systems tend to rely on expensive computation of comparatively largedimension data sets, ours leverages information from a small number of fundamentally different sensor measurements that provide context information pertaining the person's location, and action information by observing the motion of the body and arms. Camera nodes are placed on the ceiling to track people in the environment, and place them in the context of a building map where areas and objects of interest are premarked. Additionally, a single inertial sensor node is placed on the subject's arm to infer arm pose, heading and motion frequency using an accelerometer, gyroscope and magnetometer. These four measurements are parsed using a lightweight hierarchy of finite state machines, yielding recognition rates with high precision and recall values (0.92 and 0.93, respectively).\",\"PeriodicalId\":324810,\"journal\":{\"name\":\"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSC.2009.5289370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2009.5289370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们提出了一个辅助生活应用和智能家居的活动识别系统。虽然现有的系统往往依赖于相对大维度数据集的昂贵计算,但我们的系统利用了来自少数根本不同的传感器测量的信息,这些传感器测量提供了与人的位置有关的上下文信息,以及通过观察身体和手臂的运动来提供的动作信息。摄像头节点被放置在天花板上,以跟踪环境中的人,并将他们放置在建筑地图的上下文中,其中预先标记了感兴趣的区域和物体。此外,在受试者的手臂上放置一个惯性传感器节点,通过加速度计、陀螺仪和磁力计推断手臂姿势、方向和运动频率。这四种测量使用有限状态机的轻量级层次结构进行解析,产生具有高精度和召回值的识别率(分别为0.92和0.93)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing activities from context and arm pose using finite state machines
We present an activity-recognition system for assisted living applications and smart homes. While existing systems tend to rely on expensive computation of comparatively largedimension data sets, ours leverages information from a small number of fundamentally different sensor measurements that provide context information pertaining the person's location, and action information by observing the motion of the body and arms. Camera nodes are placed on the ceiling to track people in the environment, and place them in the context of a building map where areas and objects of interest are premarked. Additionally, a single inertial sensor node is placed on the subject's arm to infer arm pose, heading and motion frequency using an accelerometer, gyroscope and magnetometer. These four measurements are parsed using a lightweight hierarchy of finite state machines, yielding recognition rates with high precision and recall values (0.92 and 0.93, respectively).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信