基于最大横切函数的分析字典学习

Haolong Wang, Wanting Fang, Wenwu Wang, Ye Zhang, S. Sanei
{"title":"基于最大横切函数的分析字典学习","authors":"Haolong Wang, Wanting Fang, Wenwu Wang, Ye Zhang, S. Sanei","doi":"10.1109/SIPROCESS.2016.7888253","DOIUrl":null,"url":null,"abstract":"Analysis dictionary learning (ADL) aims to design dictionaries from training data based on an analysis sparse representation model. Sparse analysis model is an alternative model to the sparse synthesis model used in a variety of signal processing areas. This paper introduces a new ADL method called MAX-ADL algorithm used to estimate the dictionary directly from the noisy measurements. The algorithm employs MAX transvection function instead of 11-norm to construct the objective function, and then the analysis dictionary can be obtained by using a gradient method to iteratively optimize the objective function. Experimental results show that the algorithm performs well in natural image denoising.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis dictionary learning based on max transvection function\",\"authors\":\"Haolong Wang, Wanting Fang, Wenwu Wang, Ye Zhang, S. Sanei\",\"doi\":\"10.1109/SIPROCESS.2016.7888253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis dictionary learning (ADL) aims to design dictionaries from training data based on an analysis sparse representation model. Sparse analysis model is an alternative model to the sparse synthesis model used in a variety of signal processing areas. This paper introduces a new ADL method called MAX-ADL algorithm used to estimate the dictionary directly from the noisy measurements. The algorithm employs MAX transvection function instead of 11-norm to construct the objective function, and then the analysis dictionary can be obtained by using a gradient method to iteratively optimize the objective function. Experimental results show that the algorithm performs well in natural image denoising.\",\"PeriodicalId\":142802,\"journal\":{\"name\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPROCESS.2016.7888253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析字典学习(ADL)的目的是基于分析稀疏表示模型,从训练数据中设计字典。稀疏分析模型是用于各种信号处理领域的稀疏综合模型的替代模型。本文介绍了一种新的ADL方法,称为MAX-ADL算法,用于直接从噪声测量中估计字典。该算法采用MAX横切函数代替11范数构造目标函数,然后采用梯度法对目标函数进行迭代优化得到分析字典。实验结果表明,该算法具有较好的自然图像去噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis dictionary learning based on max transvection function
Analysis dictionary learning (ADL) aims to design dictionaries from training data based on an analysis sparse representation model. Sparse analysis model is an alternative model to the sparse synthesis model used in a variety of signal processing areas. This paper introduces a new ADL method called MAX-ADL algorithm used to estimate the dictionary directly from the noisy measurements. The algorithm employs MAX transvection function instead of 11-norm to construct the objective function, and then the analysis dictionary can be obtained by using a gradient method to iteratively optimize the objective function. Experimental results show that the algorithm performs well in natural image denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信