{"title":"基于随机投影的非负最小二乘高光谱图像解混","authors":"V. Menon, Q. Du, J. Fowler","doi":"10.1109/WHISPERS.2016.8071796","DOIUrl":null,"url":null,"abstract":"Nonnegative least squares, a state-of-the-art approach to endmember abundance estimation in the hyperspectral-unmixing problem, is coupled with random projection employed for dimensionality reduction. Both Hadamard- and Gaussian-based projections are considered. Experimental results reveal that random projections can significantly reduce data volume without detrimentally affecting the accuracy of the abundance estimation, with the Hadamard-based approach slightly outperforming its Gaussian counterpart.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"156 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Random-projection-based nonnegative least squares for hyperspectral image unmixing\",\"authors\":\"V. Menon, Q. Du, J. Fowler\",\"doi\":\"10.1109/WHISPERS.2016.8071796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonnegative least squares, a state-of-the-art approach to endmember abundance estimation in the hyperspectral-unmixing problem, is coupled with random projection employed for dimensionality reduction. Both Hadamard- and Gaussian-based projections are considered. Experimental results reveal that random projections can significantly reduce data volume without detrimentally affecting the accuracy of the abundance estimation, with the Hadamard-based approach slightly outperforming its Gaussian counterpart.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"156 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random-projection-based nonnegative least squares for hyperspectral image unmixing
Nonnegative least squares, a state-of-the-art approach to endmember abundance estimation in the hyperspectral-unmixing problem, is coupled with random projection employed for dimensionality reduction. Both Hadamard- and Gaussian-based projections are considered. Experimental results reveal that random projections can significantly reduce data volume without detrimentally affecting the accuracy of the abundance estimation, with the Hadamard-based approach slightly outperforming its Gaussian counterpart.