一种基于进化的生成对抗网络启发方法来击败变形恶意软件

Kehinde O. Babaagba, Jordan Wylie
{"title":"一种基于进化的生成对抗网络启发方法来击败变形恶意软件","authors":"Kehinde O. Babaagba, Jordan Wylie","doi":"10.1145/3583133.3596362","DOIUrl":null,"url":null,"abstract":"Defeating dangerous families of malware like polymorphic and metamorphic malware have become well studied due to their increased attacks on computer systems and network. Traditional Machine Learning (ML) models have been used in detecting this malware, however they are often not resistant to future attacks. In this paper, an Evolutionary based Generative Adversarial Network (GAN) inspired approach is proposed as a step towards defeating metamorphic malware. This method uses an Evolutionary Algorithm as a generator to create malware that are designed to fool a detector, a deep learning model into classifying them as benign. We employ a personal information stealing malware family (Dougalek) as a testbed, selected based on its malicious payload and evaluate the samples generated based on their adversarial accuracy, measured based on the number of Antivirus (AV) engines they are able to fool and their ability to fool a set of ML detectors (k-Nearest Neighbors algorithm, Support Vector Machine, Decision Trees, and Multi-Layer Perceptron). The results show that the adversarial samples are on average able to fool 63% of the AV engines and the ML detectors are susceptible to the new mutants achieving an accuracy between 60%-77%.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evolutionary based Generative Adversarial Network Inspired Approach to Defeating Metamorphic Malware\",\"authors\":\"Kehinde O. Babaagba, Jordan Wylie\",\"doi\":\"10.1145/3583133.3596362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defeating dangerous families of malware like polymorphic and metamorphic malware have become well studied due to their increased attacks on computer systems and network. Traditional Machine Learning (ML) models have been used in detecting this malware, however they are often not resistant to future attacks. In this paper, an Evolutionary based Generative Adversarial Network (GAN) inspired approach is proposed as a step towards defeating metamorphic malware. This method uses an Evolutionary Algorithm as a generator to create malware that are designed to fool a detector, a deep learning model into classifying them as benign. We employ a personal information stealing malware family (Dougalek) as a testbed, selected based on its malicious payload and evaluate the samples generated based on their adversarial accuracy, measured based on the number of Antivirus (AV) engines they are able to fool and their ability to fool a set of ML detectors (k-Nearest Neighbors algorithm, Support Vector Machine, Decision Trees, and Multi-Layer Perceptron). The results show that the adversarial samples are on average able to fool 63% of the AV engines and the ML detectors are susceptible to the new mutants achieving an accuracy between 60%-77%.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3596362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于多态和变形恶意软件对计算机系统和网络的攻击越来越多,打败这些恶意软件的危险家族已经得到了很好的研究。传统的机器学习(ML)模型已被用于检测这种恶意软件,但它们通常无法抵抗未来的攻击。在本文中,提出了一种基于进化的生成对抗网络(GAN)启发的方法,作为击败变形恶意软件的一步。这种方法使用进化算法作为生成器来创建恶意软件,旨在欺骗检测器,即深度学习模型,将其分类为良性。我们采用个人信息窃取恶意软件家族(Dougalek)作为测试平台,根据其恶意有效载荷进行选择,并根据其对抗性准确性评估生成的样本,根据他们能够欺骗的反病毒(AV)引擎的数量以及他们欺骗一组机器学习检测器(k-最近邻算法,支持向量机,决策树和多层感知器)的能力进行测量。结果表明,对抗样本平均能够欺骗63%的AV引擎,ML检测器容易受到新的突变体的影响,准确率在60%-77%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evolutionary based Generative Adversarial Network Inspired Approach to Defeating Metamorphic Malware
Defeating dangerous families of malware like polymorphic and metamorphic malware have become well studied due to their increased attacks on computer systems and network. Traditional Machine Learning (ML) models have been used in detecting this malware, however they are often not resistant to future attacks. In this paper, an Evolutionary based Generative Adversarial Network (GAN) inspired approach is proposed as a step towards defeating metamorphic malware. This method uses an Evolutionary Algorithm as a generator to create malware that are designed to fool a detector, a deep learning model into classifying them as benign. We employ a personal information stealing malware family (Dougalek) as a testbed, selected based on its malicious payload and evaluate the samples generated based on their adversarial accuracy, measured based on the number of Antivirus (AV) engines they are able to fool and their ability to fool a set of ML detectors (k-Nearest Neighbors algorithm, Support Vector Machine, Decision Trees, and Multi-Layer Perceptron). The results show that the adversarial samples are on average able to fool 63% of the AV engines and the ML detectors are susceptible to the new mutants achieving an accuracy between 60%-77%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信