利用词位信息增强概率信息检索

Baiyan Liu, X. An, Xiangji Huang
{"title":"利用词位信息增强概率信息检索","authors":"Baiyan Liu, X. An, Xiangji Huang","doi":"10.1145/2766462.2767827","DOIUrl":null,"url":null,"abstract":"Nouns are more important than other parts of speech in information retrieval and are more often found near the beginning or the end of sentences. In this paper, we investigate the effects of rewarding terms based on their location in sentences on information retrieval. Particularly, we propose a novel Term Location (TEL) retrieval model based on BM25 to enhance probabilistic information retrieval, where a kernel-based method is used to capture term placement patterns. Experiments on five TREC datasets of varied size and content indicate the proposed model significantly outperforms the optimized BM25 and DirichletLM in MAP over all datasets with all kernel functions, and excels the optimized BM25 and DirichletLM over most of the datasets in P@5 and P@20 with different kernel functions.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Using Term Location Information to Enhance Probabilistic Information Retrieval\",\"authors\":\"Baiyan Liu, X. An, Xiangji Huang\",\"doi\":\"10.1145/2766462.2767827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nouns are more important than other parts of speech in information retrieval and are more often found near the beginning or the end of sentences. In this paper, we investigate the effects of rewarding terms based on their location in sentences on information retrieval. Particularly, we propose a novel Term Location (TEL) retrieval model based on BM25 to enhance probabilistic information retrieval, where a kernel-based method is used to capture term placement patterns. Experiments on five TREC datasets of varied size and content indicate the proposed model significantly outperforms the optimized BM25 and DirichletLM in MAP over all datasets with all kernel functions, and excels the optimized BM25 and DirichletLM over most of the datasets in P@5 and P@20 with different kernel functions.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

名词在信息检索中比其他词类更重要,通常出现在句子的开头或结尾。本文研究了基于句子位置的奖励词对信息检索的影响。特别地,我们提出了一种新的基于BM25的术语定位(TEL)检索模型来增强概率信息检索,其中使用基于核的方法来捕获术语放置模式。在5个不同大小和内容的TREC数据集上进行的实验表明,该模型在具有所有核函数的所有数据集上都明显优于MAP中优化后的BM25和DirichletLM,并且在具有不同核函数的P@5和P@20的大多数数据集上都优于优化后的BM25和DirichletLM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Term Location Information to Enhance Probabilistic Information Retrieval
Nouns are more important than other parts of speech in information retrieval and are more often found near the beginning or the end of sentences. In this paper, we investigate the effects of rewarding terms based on their location in sentences on information retrieval. Particularly, we propose a novel Term Location (TEL) retrieval model based on BM25 to enhance probabilistic information retrieval, where a kernel-based method is used to capture term placement patterns. Experiments on five TREC datasets of varied size and content indicate the proposed model significantly outperforms the optimized BM25 and DirichletLM in MAP over all datasets with all kernel functions, and excels the optimized BM25 and DirichletLM over most of the datasets in P@5 and P@20 with different kernel functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信