单调平面电路

D. A. Barrington, Chi-Jen Lu, Peter Bro Miltersen, Sven Skyum
{"title":"单调平面电路","authors":"D. A. Barrington, Chi-Jen Lu, Peter Bro Miltersen, Sven Skyum","doi":"10.1109/CCC.1999.766259","DOIUrl":null,"url":null,"abstract":"In this paper we show several results about monotone planar circuits. We show that monotone planar circuits of bounded width, with access to negated input variables, compute exactly the functions in non-uniform AC/sup 0/. This provides a striking contrast to the non-planar case, where exactly NC/sup 1/ is computed. We show that the circuit value problem for monotone planar circuits, with inputs on the outerface only, can be solved in LOGDCFL/spl sube/SC, improving a LOGCFL upper bound due to Dymond and Cook. We show that for monotone planar circuits, with inputs on the outerface only, excessive depth compared to width is useless; any function computed by a monotone planar circuit of width w with inputs on the outerface can be computed by a monotone planar circuit of width O(w) and depth w/sup O(1)/. Finally, we show that monotone planar read-once circuits, with inputs on the outerface only, can be efficiently learned using membership queries.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"On monotone planar circuits\",\"authors\":\"D. A. Barrington, Chi-Jen Lu, Peter Bro Miltersen, Sven Skyum\",\"doi\":\"10.1109/CCC.1999.766259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show several results about monotone planar circuits. We show that monotone planar circuits of bounded width, with access to negated input variables, compute exactly the functions in non-uniform AC/sup 0/. This provides a striking contrast to the non-planar case, where exactly NC/sup 1/ is computed. We show that the circuit value problem for monotone planar circuits, with inputs on the outerface only, can be solved in LOGDCFL/spl sube/SC, improving a LOGCFL upper bound due to Dymond and Cook. We show that for monotone planar circuits, with inputs on the outerface only, excessive depth compared to width is useless; any function computed by a monotone planar circuit of width w with inputs on the outerface can be computed by a monotone planar circuit of width O(w) and depth w/sup O(1)/. Finally, we show that monotone planar read-once circuits, with inputs on the outerface only, can be efficiently learned using membership queries.\",\"PeriodicalId\":432015,\"journal\":{\"name\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"volume\":\"06 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.1999.766259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文给出了单调平面电路的几个结果。我们证明了有界宽度的单调平面电路,可以访问负的输入变量,精确地计算非均匀AC/sup 0/下的函数。这与非平面情况形成鲜明对比,在非平面情况下,精确地计算NC/sup 1/。我们证明了只有外表面输入的单调平面电路的电路值问题,可以在LOGDCFL/spl sub /SC中解决,改进了Dymond和Cook提出的LOGCFL上界。我们表明,对于单调平面电路,输入仅在外表面,与宽度相比,过多的深度是无用的;用宽度为w、输入在外表面的单调平面电路计算的任何函数都可以用宽度为O(w)、深度为w/sup为O(1)/的单调平面电路计算。最后,我们证明了只在外表面输入的单调平面读一次电路可以使用隶属度查询有效地学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On monotone planar circuits
In this paper we show several results about monotone planar circuits. We show that monotone planar circuits of bounded width, with access to negated input variables, compute exactly the functions in non-uniform AC/sup 0/. This provides a striking contrast to the non-planar case, where exactly NC/sup 1/ is computed. We show that the circuit value problem for monotone planar circuits, with inputs on the outerface only, can be solved in LOGDCFL/spl sube/SC, improving a LOGCFL upper bound due to Dymond and Cook. We show that for monotone planar circuits, with inputs on the outerface only, excessive depth compared to width is useless; any function computed by a monotone planar circuit of width w with inputs on the outerface can be computed by a monotone planar circuit of width O(w) and depth w/sup O(1)/. Finally, we show that monotone planar read-once circuits, with inputs on the outerface only, can be efficiently learned using membership queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信