利用自定义杜鹃滤波器降低虹膜识别模板保护的错误率

K. Raja, Ramachandra Raghavendra, C. Busch
{"title":"利用自定义杜鹃滤波器降低虹膜识别模板保护的错误率","authors":"K. Raja, Ramachandra Raghavendra, C. Busch","doi":"10.1109/ISBA.2019.8778470","DOIUrl":null,"url":null,"abstract":"The need to protect biometric data within iris systems has resulted in a number of template protection schemes. A primary issue with current template protection schemes for iris recognition is the unavoidable biometric error rates, i.e., for any given False Non-Match Rate (FNMR) there is a high False Match Rate (FMR), especially at lower values of FNMR. In this work, we primarily focus on addressing this problem using a new approach with Cuckoo Filtering simultaneously using both stable bits and discriminative bits to derive a stronger template protection scheme. The proposed template protection scheme performs in a robust manner for various configurations as compared to earlier template protection schemes that need empirical fine-tuning. With the set of experiments on a publicly available iris dataset, we benchmark our results against the state-of-art template protection scheme based on Bloom-Filters. Specifically, we demonstrate the gain in performance and robustness of proposed approach at lower FNMR and invariance of performance to configurations of template protection scheme. With a specific configuration of proposed approach, we achieve Genuine Match Rate (GMR) = 100% at FMR = 0:01% and EER = 0% in the best case and GMR = 98:44% at FMR = 0:01% and EER = 0:33% in the worst case on IITD Iris database.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards Reducing the Error Rates in Template Protection for Iris Recognition Using Custom Cuckoo Filters\",\"authors\":\"K. Raja, Ramachandra Raghavendra, C. Busch\",\"doi\":\"10.1109/ISBA.2019.8778470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to protect biometric data within iris systems has resulted in a number of template protection schemes. A primary issue with current template protection schemes for iris recognition is the unavoidable biometric error rates, i.e., for any given False Non-Match Rate (FNMR) there is a high False Match Rate (FMR), especially at lower values of FNMR. In this work, we primarily focus on addressing this problem using a new approach with Cuckoo Filtering simultaneously using both stable bits and discriminative bits to derive a stronger template protection scheme. The proposed template protection scheme performs in a robust manner for various configurations as compared to earlier template protection schemes that need empirical fine-tuning. With the set of experiments on a publicly available iris dataset, we benchmark our results against the state-of-art template protection scheme based on Bloom-Filters. Specifically, we demonstrate the gain in performance and robustness of proposed approach at lower FNMR and invariance of performance to configurations of template protection scheme. With a specific configuration of proposed approach, we achieve Genuine Match Rate (GMR) = 100% at FMR = 0:01% and EER = 0% in the best case and GMR = 98:44% at FMR = 0:01% and EER = 0:33% in the worst case on IITD Iris database.\",\"PeriodicalId\":270033,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2019.8778470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了保护虹膜系统内的生物识别数据,出现了许多模板保护方案。当前用于虹膜识别的模板保护方案的一个主要问题是不可避免的生物特征错误率,即对于任何给定的假非匹配率(FNMR),都存在较高的假匹配率(FMR),特别是在较低的FNMR值时。在这项工作中,我们主要关注使用杜鹃滤波的新方法来解决这个问题,同时使用稳定位和判别位来推导更强的模板保护方案。与需要经验微调的早期模板保护方案相比,本文提出的模板保护方案对各种配置具有鲁棒性。通过在公开可用的虹膜数据集上进行的一组实验,我们将我们的结果与基于Bloom-Filters的最先进的模板保护方案进行了基准测试。具体来说,我们证明了该方法在较低FNMR下的性能增益和鲁棒性,以及性能对模板保护方案配置的不变性。在IITD Iris数据库上,通过对该方法的具体配置,在最佳情况下,在FMR = 0:01%时,GMR = 100%, EER = 0%;在最差情况下,在FMR = 0:01%时,GMR = 98:44%, EER = 0:33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Reducing the Error Rates in Template Protection for Iris Recognition Using Custom Cuckoo Filters
The need to protect biometric data within iris systems has resulted in a number of template protection schemes. A primary issue with current template protection schemes for iris recognition is the unavoidable biometric error rates, i.e., for any given False Non-Match Rate (FNMR) there is a high False Match Rate (FMR), especially at lower values of FNMR. In this work, we primarily focus on addressing this problem using a new approach with Cuckoo Filtering simultaneously using both stable bits and discriminative bits to derive a stronger template protection scheme. The proposed template protection scheme performs in a robust manner for various configurations as compared to earlier template protection schemes that need empirical fine-tuning. With the set of experiments on a publicly available iris dataset, we benchmark our results against the state-of-art template protection scheme based on Bloom-Filters. Specifically, we demonstrate the gain in performance and robustness of proposed approach at lower FNMR and invariance of performance to configurations of template protection scheme. With a specific configuration of proposed approach, we achieve Genuine Match Rate (GMR) = 100% at FMR = 0:01% and EER = 0% in the best case and GMR = 98:44% at FMR = 0:01% and EER = 0:33% in the worst case on IITD Iris database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信