一种计算最小鲁棒前向不变量集的路径规划方法

S. Mukhopadhyay, Fumin Zhang
{"title":"一种计算最小鲁棒前向不变量集的路径规划方法","authors":"S. Mukhopadhyay, Fumin Zhang","doi":"10.1109/ACC.2014.6859367","DOIUrl":null,"url":null,"abstract":"Robustness of nonlinear systems can be analyzed by computing robust forward invariant sets (RFIS). The smallest RFIS provides the least conservative estimate of system performance under perturbations. However, computation of the smallest RFIS through brute force search can be a difficult task. We develop a novel algorithm to find the smallest RFIS for two-dimensional systems subjected to bounded additive perturbations. The algorithm leverages path planning algorithms to produce an approximation of the boundary of the smallest RFIS. The algorithm is mathematically justified, and simulation results are provided showing that the proposed algorithm can be used to find an RFIS that is very close to the smallest RFIS. The amount of computation is effectively reduced. Hence the algorithm may be generalized to higher dimensional systems with generic perturbations.","PeriodicalId":369729,"journal":{"name":"2014 American Control Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A path planning approach to compute the smallest robust forward invariant sets\",\"authors\":\"S. Mukhopadhyay, Fumin Zhang\",\"doi\":\"10.1109/ACC.2014.6859367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robustness of nonlinear systems can be analyzed by computing robust forward invariant sets (RFIS). The smallest RFIS provides the least conservative estimate of system performance under perturbations. However, computation of the smallest RFIS through brute force search can be a difficult task. We develop a novel algorithm to find the smallest RFIS for two-dimensional systems subjected to bounded additive perturbations. The algorithm leverages path planning algorithms to produce an approximation of the boundary of the smallest RFIS. The algorithm is mathematically justified, and simulation results are provided showing that the proposed algorithm can be used to find an RFIS that is very close to the smallest RFIS. The amount of computation is effectively reduced. Hence the algorithm may be generalized to higher dimensional systems with generic perturbations.\",\"PeriodicalId\":369729,\"journal\":{\"name\":\"2014 American Control Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2014.6859367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2014.6859367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

非线性系统的鲁棒性可以通过计算鲁棒前向不变量集(RFIS)来分析。最小的RFIS提供了扰动下系统性能的最小保守估计。然而,通过暴力搜索计算最小的RFIS可能是一项困难的任务。我们开发了一种新的算法来寻找受有界加性扰动的二维系统的最小RFIS。该算法利用路径规划算法产生最小RFIS边界的近似值。该算法在数学上是合理的,仿真结果表明,该算法可以用于寻找非常接近最小RFIS的RFIS。有效地减少了计算量。因此,该算法可以推广到具有一般摄动的高维系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A path planning approach to compute the smallest robust forward invariant sets
Robustness of nonlinear systems can be analyzed by computing robust forward invariant sets (RFIS). The smallest RFIS provides the least conservative estimate of system performance under perturbations. However, computation of the smallest RFIS through brute force search can be a difficult task. We develop a novel algorithm to find the smallest RFIS for two-dimensional systems subjected to bounded additive perturbations. The algorithm leverages path planning algorithms to produce an approximation of the boundary of the smallest RFIS. The algorithm is mathematically justified, and simulation results are provided showing that the proposed algorithm can be used to find an RFIS that is very close to the smallest RFIS. The amount of computation is effectively reduced. Hence the algorithm may be generalized to higher dimensional systems with generic perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信