基于教育数据的学生学习成绩预测研究

Yubo Zhang, Yanfang Liu
{"title":"基于教育数据的学生学习成绩预测研究","authors":"Yubo Zhang, Yanfang Liu","doi":"10.1145/3507548.3507578","DOIUrl":null,"url":null,"abstract":"In recent years, with the continuous improvement of teaching informatization, online teaching or online and offline hybrid teaching has become the new normal of teaching in some schools. However, the biggest problem in online teaching is that it is difficult to predict students' academic performance. Therefore, it is necessary to design an effective method to predict students' academic performance more accurately. In this paper, a student academic level prediction method based on stacking model fusion is proposed. Logistic regression, random forest, XGBoost, and Naive Bayes are selected as base learners according to optimal fusion criteria and model properties. Furthermore, the structure and distribution of the features of the dataset are optimized by data preprocessing, feature coding, and feature selection, and the upper limit of the model expression is effectively raised. On this basis, according to the features of dataset and model performance, we select the appropriate model for model fusion, and further improve the prediction effect. Experiments are conducted on OULAD and xAPI datasets, and the results show that the prediction accuracy of the proposed method is better than that of traditional prediction methods. Finally, we analyze the factors that affect academic performance and give some specific suggestions.","PeriodicalId":414908,"journal":{"name":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Research of Predicting Student's Academic Performance Based on Educational Data\",\"authors\":\"Yubo Zhang, Yanfang Liu\",\"doi\":\"10.1145/3507548.3507578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the continuous improvement of teaching informatization, online teaching or online and offline hybrid teaching has become the new normal of teaching in some schools. However, the biggest problem in online teaching is that it is difficult to predict students' academic performance. Therefore, it is necessary to design an effective method to predict students' academic performance more accurately. In this paper, a student academic level prediction method based on stacking model fusion is proposed. Logistic regression, random forest, XGBoost, and Naive Bayes are selected as base learners according to optimal fusion criteria and model properties. Furthermore, the structure and distribution of the features of the dataset are optimized by data preprocessing, feature coding, and feature selection, and the upper limit of the model expression is effectively raised. On this basis, according to the features of dataset and model performance, we select the appropriate model for model fusion, and further improve the prediction effect. Experiments are conducted on OULAD and xAPI datasets, and the results show that the prediction accuracy of the proposed method is better than that of traditional prediction methods. Finally, we analyze the factors that affect academic performance and give some specific suggestions.\",\"PeriodicalId\":414908,\"journal\":{\"name\":\"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence\",\"volume\":\"220 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3507548.3507578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507548.3507578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着教学信息化程度的不断提高,在线教学或线上线下混合教学已成为一些学校教学的新常态。然而,在线教学最大的问题是很难预测学生的学习成绩。因此,有必要设计一种有效的方法来更准确地预测学生的学习成绩。提出了一种基于叠加模型融合的学生学业水平预测方法。根据最优融合准则和模型特性,选择逻辑回归、随机森林、XGBoost和朴素贝叶斯作为基础学习器。通过数据预处理、特征编码、特征选择等方法对数据集特征的结构和分布进行优化,有效提高了模型表达的上限。在此基础上,根据数据集和模型性能的特点,选择合适的模型进行模型融合,进一步提高预测效果。在OULAD和xAPI数据集上进行了实验,结果表明,该方法的预测精度优于传统的预测方法。最后,分析了影响学生学习成绩的因素,并提出了具体的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Research of Predicting Student's Academic Performance Based on Educational Data
In recent years, with the continuous improvement of teaching informatization, online teaching or online and offline hybrid teaching has become the new normal of teaching in some schools. However, the biggest problem in online teaching is that it is difficult to predict students' academic performance. Therefore, it is necessary to design an effective method to predict students' academic performance more accurately. In this paper, a student academic level prediction method based on stacking model fusion is proposed. Logistic regression, random forest, XGBoost, and Naive Bayes are selected as base learners according to optimal fusion criteria and model properties. Furthermore, the structure and distribution of the features of the dataset are optimized by data preprocessing, feature coding, and feature selection, and the upper limit of the model expression is effectively raised. On this basis, according to the features of dataset and model performance, we select the appropriate model for model fusion, and further improve the prediction effect. Experiments are conducted on OULAD and xAPI datasets, and the results show that the prediction accuracy of the proposed method is better than that of traditional prediction methods. Finally, we analyze the factors that affect academic performance and give some specific suggestions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信