{"title":"激波激励下桨壳非定常数值流体力学","authors":"Calder J. Hartigan, A. S. Onas","doi":"10.5957/smc-2022-080","DOIUrl":null,"url":null,"abstract":"The effect of oscillating harmonic surge motions on a Wigley hull in deep and shallow water was investigated numerically using unsteady Reynolds-Averaged Navier Stokes (URANSE) CFD simulations in a three-dimensional computational domain. The frequency and amplitude of the surge motions were varied independently and validated using experimental data. The URANSE CFD simulations were validated by comparison with the experimental results and unsteady thin-ship resistance predictions of Doctors et al. (2010). The numerical results show reasonable agreement with rowing shells experimental data and for the most part follow the expected trends across the entire operating range of Froude numbers. However, in this first iteration several discrepancies have been identified between the CFD simulations and the experimental results, especially across the frequency-response metrics. The numerical approach in this unsteady hydrodynamics analysis does indicate that with further adjustments and improvement of the quality of the computational domain, the more complex URANSE CFD simulations have the potential to provide a powerful alternative to experimental testing.","PeriodicalId":336268,"journal":{"name":"Day 2 Wed, September 28, 2022","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady Numerical Hydrodynamics of a Rowing Shell Under Surge Excitation\",\"authors\":\"Calder J. Hartigan, A. S. Onas\",\"doi\":\"10.5957/smc-2022-080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of oscillating harmonic surge motions on a Wigley hull in deep and shallow water was investigated numerically using unsteady Reynolds-Averaged Navier Stokes (URANSE) CFD simulations in a three-dimensional computational domain. The frequency and amplitude of the surge motions were varied independently and validated using experimental data. The URANSE CFD simulations were validated by comparison with the experimental results and unsteady thin-ship resistance predictions of Doctors et al. (2010). The numerical results show reasonable agreement with rowing shells experimental data and for the most part follow the expected trends across the entire operating range of Froude numbers. However, in this first iteration several discrepancies have been identified between the CFD simulations and the experimental results, especially across the frequency-response metrics. The numerical approach in this unsteady hydrodynamics analysis does indicate that with further adjustments and improvement of the quality of the computational domain, the more complex URANSE CFD simulations have the potential to provide a powerful alternative to experimental testing.\",\"PeriodicalId\":336268,\"journal\":{\"name\":\"Day 2 Wed, September 28, 2022\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 28, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5957/smc-2022-080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 28, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/smc-2022-080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
采用三维计算域非定常reynolds - average Navier Stokes (URANSE) CFD模拟方法,对Wigley船体在深水和浅水中振荡谐波浪涌运动的影响进行了数值研究。脉动运动的频率和幅度是独立变化的,并通过实验数据进行了验证。通过与Doctors et al.(2010)的实验结果和非定常薄船阻力预测对比,验证了URANSE CFD模拟的正确性。计算结果与桨壳实验数据吻合较好,在整个弗劳德数范围内基本符合预期趋势。然而,在第一次迭代中,在CFD模拟和实验结果之间发现了一些差异,特别是在频率响应指标上。该非定常流体动力学分析的数值方法表明,随着计算域质量的进一步调整和提高,更复杂的URANSE CFD模拟有可能为实验测试提供强大的替代方案。
Unsteady Numerical Hydrodynamics of a Rowing Shell Under Surge Excitation
The effect of oscillating harmonic surge motions on a Wigley hull in deep and shallow water was investigated numerically using unsteady Reynolds-Averaged Navier Stokes (URANSE) CFD simulations in a three-dimensional computational domain. The frequency and amplitude of the surge motions were varied independently and validated using experimental data. The URANSE CFD simulations were validated by comparison with the experimental results and unsteady thin-ship resistance predictions of Doctors et al. (2010). The numerical results show reasonable agreement with rowing shells experimental data and for the most part follow the expected trends across the entire operating range of Froude numbers. However, in this first iteration several discrepancies have been identified between the CFD simulations and the experimental results, especially across the frequency-response metrics. The numerical approach in this unsteady hydrodynamics analysis does indicate that with further adjustments and improvement of the quality of the computational domain, the more complex URANSE CFD simulations have the potential to provide a powerful alternative to experimental testing.