使用被分类噪声破坏的查询进行学习

J. C. Jackson, E. Shamir, Clara Shwartzman
{"title":"使用被分类噪声破坏的查询进行学习","authors":"J. C. Jackson, E. Shamir, Clara Shwartzman","doi":"10.1109/ISTCS.1997.595156","DOIUrl":null,"url":null,"abstract":"Kearns introduced the \"statistical query\" (SQ) model as a general method for producing learning algorithms which are robust against classification noise. We extend this approach in several ways, in order to tackle algorithms that use \"membership queries\": focusing on the more stringent model of \"persistent noise\". The main ingredients in the general analysis are: (1) Smallness of dimension of both the targets' class and the queries' class. (2) Independence of the noise variables. Persistence restricts independence forcing repeated invocation of the same point x to give the same label. We apply the general analysis and ad-hoc considerations to get noise-robust version of Jackson's Harmonic Sieve (1995), which learns DNF under the uniform distribution. This corrects an error in his earlier analysis of noise tolerant DNF learning.","PeriodicalId":367160,"journal":{"name":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Learning with queries corrupted by classification noise\",\"authors\":\"J. C. Jackson, E. Shamir, Clara Shwartzman\",\"doi\":\"10.1109/ISTCS.1997.595156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kearns introduced the \\\"statistical query\\\" (SQ) model as a general method for producing learning algorithms which are robust against classification noise. We extend this approach in several ways, in order to tackle algorithms that use \\\"membership queries\\\": focusing on the more stringent model of \\\"persistent noise\\\". The main ingredients in the general analysis are: (1) Smallness of dimension of both the targets' class and the queries' class. (2) Independence of the noise variables. Persistence restricts independence forcing repeated invocation of the same point x to give the same label. We apply the general analysis and ad-hoc considerations to get noise-robust version of Jackson's Harmonic Sieve (1995), which learns DNF under the uniform distribution. This corrects an error in his earlier analysis of noise tolerant DNF learning.\",\"PeriodicalId\":367160,\"journal\":{\"name\":\"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTCS.1997.595156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTCS.1997.595156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

Kearns引入了“统计查询”(SQ)模型,作为生成对分类噪声具有鲁棒性的学习算法的一般方法。为了解决使用“成员查询”的算法,我们以几种方式扩展了这种方法:专注于更严格的“持续噪声”模型。一般分析的主要成分是:(1)目标类和查询类的维数都较小。(2)噪声变量的独立性。持久性限制独立性,强制重复调用相同的点x以提供相同的标签。我们应用一般分析和特别考虑来获得Jackson's Harmonic Sieve(1995)的噪声鲁棒版本,该版本在均匀分布下学习DNF。这纠正了他在早期对耐噪声DNF学习的分析中的一个错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning with queries corrupted by classification noise
Kearns introduced the "statistical query" (SQ) model as a general method for producing learning algorithms which are robust against classification noise. We extend this approach in several ways, in order to tackle algorithms that use "membership queries": focusing on the more stringent model of "persistent noise". The main ingredients in the general analysis are: (1) Smallness of dimension of both the targets' class and the queries' class. (2) Independence of the noise variables. Persistence restricts independence forcing repeated invocation of the same point x to give the same label. We apply the general analysis and ad-hoc considerations to get noise-robust version of Jackson's Harmonic Sieve (1995), which learns DNF under the uniform distribution. This corrects an error in his earlier analysis of noise tolerant DNF learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信