基于显著性分析和几何特征检测的遥感影像机场检测

Wanning Zhu, Qijian Zhang, Li-bao Zhang
{"title":"基于显著性分析和几何特征检测的遥感影像机场检测","authors":"Wanning Zhu, Qijian Zhang, Li-bao Zhang","doi":"10.1109/IGARSS39084.2020.9323253","DOIUrl":null,"url":null,"abstract":"Owing to the complicated background information and large data volume in remote sensing (RS) images, it's difficult to detect airport precisely and efficiently. In this paper, we propose a credible airport detection method based on saliency analysis and geometric feature detection. On the one hand, we use a novel saliency analysis model to measure both global contrast and spatial unity in RS images, by which the most salient region can be extracted accurately and the background can be suppressed preferably. On the other hand, considering the geometric features of the airport, a feature descriptor is conducted to detect proper hole structures and line segments in the saliency map. The experimental results indicate that our proposal outperforms existing saliency analysis models and shows good performance in the detection of the airport.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Airport Detection Based on Saliency Analysis and Geometric Feature Detection for Remote Sensing Images\",\"authors\":\"Wanning Zhu, Qijian Zhang, Li-bao Zhang\",\"doi\":\"10.1109/IGARSS39084.2020.9323253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the complicated background information and large data volume in remote sensing (RS) images, it's difficult to detect airport precisely and efficiently. In this paper, we propose a credible airport detection method based on saliency analysis and geometric feature detection. On the one hand, we use a novel saliency analysis model to measure both global contrast and spatial unity in RS images, by which the most salient region can be extracted accurately and the background can be suppressed preferably. On the other hand, considering the geometric features of the airport, a feature descriptor is conducted to detect proper hole structures and line segments in the saliency map. The experimental results indicate that our proposal outperforms existing saliency analysis models and shows good performance in the detection of the airport.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于遥感影像背景信息复杂,数据量大,难以对机场进行精确、高效的探测。本文提出了一种基于显著性分析和几何特征检测的可信机场检测方法。一方面,我们采用了一种新的显著性分析模型来衡量RS图像的整体对比度和空间统一性,该模型可以准确地提取出最显著的区域,并能较好地抑制背景;另一方面,考虑机场的几何特征,利用特征描述符在显著性图中检测合适的孔结构和线段。实验结果表明,我们的方法优于现有的显著性分析模型,在机场检测方面表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Airport Detection Based on Saliency Analysis and Geometric Feature Detection for Remote Sensing Images
Owing to the complicated background information and large data volume in remote sensing (RS) images, it's difficult to detect airport precisely and efficiently. In this paper, we propose a credible airport detection method based on saliency analysis and geometric feature detection. On the one hand, we use a novel saliency analysis model to measure both global contrast and spatial unity in RS images, by which the most salient region can be extracted accurately and the background can be suppressed preferably. On the other hand, considering the geometric features of the airport, a feature descriptor is conducted to detect proper hole structures and line segments in the saliency map. The experimental results indicate that our proposal outperforms existing saliency analysis models and shows good performance in the detection of the airport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信