可穿戴系统的协同实时说话人识别

M. Rossi, O. Amft, Martin Kusserow, G. Tröster
{"title":"可穿戴系统的协同实时说话人识别","authors":"M. Rossi, O. Amft, Martin Kusserow, G. Tröster","doi":"10.1109/PERCOM.2010.5466976","DOIUrl":null,"url":null,"abstract":"We present an unsupervised speaker identification system for personal annotations of conversations and meetings. The system dynamically learns new speakers and recognizes already known speakers using one audio channel and speech-independent modeling. Multiple personal systems could collaborate in robust unsupervised speaker identification and online learning. The system was optimized for real-time operation on a DSP system that can be worn during daily activities. The system was evaluated on the freely available 24-speaker Augmented Multiparty Interaction dataset. For 5 s recognition time, the system achieves 81% recognition rate. Collaboration between four identification systems resulted in a performance increase of up to 17%, however even two collaborating systems yield an performance improvement. A prototypical wearable DSP implementation could continuously operate for more than 8 hours from a 4.1 Ah battery.","PeriodicalId":207774,"journal":{"name":"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Collaborative real-time speaker identification for wearable systems\",\"authors\":\"M. Rossi, O. Amft, Martin Kusserow, G. Tröster\",\"doi\":\"10.1109/PERCOM.2010.5466976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an unsupervised speaker identification system for personal annotations of conversations and meetings. The system dynamically learns new speakers and recognizes already known speakers using one audio channel and speech-independent modeling. Multiple personal systems could collaborate in robust unsupervised speaker identification and online learning. The system was optimized for real-time operation on a DSP system that can be worn during daily activities. The system was evaluated on the freely available 24-speaker Augmented Multiparty Interaction dataset. For 5 s recognition time, the system achieves 81% recognition rate. Collaboration between four identification systems resulted in a performance increase of up to 17%, however even two collaborating systems yield an performance improvement. A prototypical wearable DSP implementation could continuously operate for more than 8 hours from a 4.1 Ah battery.\",\"PeriodicalId\":207774,\"journal\":{\"name\":\"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOM.2010.5466976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2010.5466976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一个无监督的说话人识别系统,用于对话和会议的个人注释。该系统动态学习新的说话者,并使用一个音频通道和语音独立建模识别已知的说话者。多个个人系统可以在强大的无监督说话人识别和在线学习中协作。该系统在DSP系统上进行了实时优化,可以在日常活动中佩戴。该系统在免费提供的24扬声器增强多方交互数据集上进行了评估。在5 s的识别时间内,系统的识别率达到81%。四个识别系统之间的协作导致性能提高高达17%,然而,即使两个协作系统也会产生性能改进。一个典型的可穿戴式DSP实现可以使用4.1 Ah的电池连续工作8小时以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative real-time speaker identification for wearable systems
We present an unsupervised speaker identification system for personal annotations of conversations and meetings. The system dynamically learns new speakers and recognizes already known speakers using one audio channel and speech-independent modeling. Multiple personal systems could collaborate in robust unsupervised speaker identification and online learning. The system was optimized for real-time operation on a DSP system that can be worn during daily activities. The system was evaluated on the freely available 24-speaker Augmented Multiparty Interaction dataset. For 5 s recognition time, the system achieves 81% recognition rate. Collaboration between four identification systems resulted in a performance increase of up to 17%, however even two collaborating systems yield an performance improvement. A prototypical wearable DSP implementation could continuously operate for more than 8 hours from a 4.1 Ah battery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信