COVID问答网络:生物医学问答的具体案例

Amar Kumar, Rupal Bhargava, M. Jayabalan
{"title":"COVID问答网络:生物医学问答的具体案例","authors":"Amar Kumar, Rupal Bhargava, M. Jayabalan","doi":"10.1109/DeSE58274.2023.10099510","DOIUrl":null,"url":null,"abstract":"COVID-19 crisis has led to an outburst of information that needs to be organized, validated, and made available to the seekers. Despite the rapid growth and success of BERT models in the last 3 years, COVID QA is a difficult task due to the lack of applicable datasets and a relevant language representation. Therefore, this study proposes a transformer-based Question Answering (QA) model for COVID-19 questions from the biomedical domain. Further, explored several datasets, and models required for question type prediction, no-answer prediction, and answer extraction and transfer learning strategies. It has been demonstrated that the exact match score can be significantly improved with limited amounts of training data from the biomedical domain. Finally, the findings of the study have been summarized as Factoid QA Finetuning Framework (FQFF), which can provide initial direction for domain-specific QA tasks with a limited amount of data.","PeriodicalId":346847,"journal":{"name":"2023 15th International Conference on Developments in eSystems Engineering (DeSE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID QA Network: A Specific Case of Biomedical Question Answering\",\"authors\":\"Amar Kumar, Rupal Bhargava, M. Jayabalan\",\"doi\":\"10.1109/DeSE58274.2023.10099510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 crisis has led to an outburst of information that needs to be organized, validated, and made available to the seekers. Despite the rapid growth and success of BERT models in the last 3 years, COVID QA is a difficult task due to the lack of applicable datasets and a relevant language representation. Therefore, this study proposes a transformer-based Question Answering (QA) model for COVID-19 questions from the biomedical domain. Further, explored several datasets, and models required for question type prediction, no-answer prediction, and answer extraction and transfer learning strategies. It has been demonstrated that the exact match score can be significantly improved with limited amounts of training data from the biomedical domain. Finally, the findings of the study have been summarized as Factoid QA Finetuning Framework (FQFF), which can provide initial direction for domain-specific QA tasks with a limited amount of data.\",\"PeriodicalId\":346847,\"journal\":{\"name\":\"2023 15th International Conference on Developments in eSystems Engineering (DeSE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Developments in eSystems Engineering (DeSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DeSE58274.2023.10099510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE58274.2023.10099510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19危机导致了大量信息的爆发,这些信息需要组织、验证并提供给寻求者。尽管BERT模型在过去3年中取得了快速增长和成功,但由于缺乏适用的数据集和相关的语言表示,COVID QA仍然是一项艰巨的任务。因此,本研究针对生物医学领域的COVID-19问题提出了基于转换器的问答(QA)模型。进一步,探讨了问题类型预测、无答案预测、答案提取和迁移学习策略所需的几个数据集和模型。已经证明,精确匹配分数可以显著提高与有限数量的训练数据从生物医学领域。最后,将研究结果总结为Factoid QA微调框架(FQFF),该框架可以在有限的数据量下为特定领域的QA任务提供初始方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID QA Network: A Specific Case of Biomedical Question Answering
COVID-19 crisis has led to an outburst of information that needs to be organized, validated, and made available to the seekers. Despite the rapid growth and success of BERT models in the last 3 years, COVID QA is a difficult task due to the lack of applicable datasets and a relevant language representation. Therefore, this study proposes a transformer-based Question Answering (QA) model for COVID-19 questions from the biomedical domain. Further, explored several datasets, and models required for question type prediction, no-answer prediction, and answer extraction and transfer learning strategies. It has been demonstrated that the exact match score can be significantly improved with limited amounts of training data from the biomedical domain. Finally, the findings of the study have been summarized as Factoid QA Finetuning Framework (FQFF), which can provide initial direction for domain-specific QA tasks with a limited amount of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信