包含储能系统的有源配电网日前调度的鲁棒优化框架

M. Nick, M. Bozorg, R. Cherkaoui, M. Paolone
{"title":"包含储能系统的有源配电网日前调度的鲁棒优化框架","authors":"M. Nick, M. Bozorg, R. Cherkaoui, M. Paolone","doi":"10.1109/PTC.2019.8810549","DOIUrl":null,"url":null,"abstract":"In this paper we present an adaptive robust optimization framework for the day-ahead scheduling of Active Distribution Networks (ADNs) where the controlled devices are distributed Energy Storage Systems (ESSs). First, the targeted problem is formulated using a two-stage optimization approach. The first-stage decisions determine the amount of import/export energy from the external grid at each hour, as well as energy exchanges for each ESS. The second stage deals with the intra-day control, given the first stage decisions. In order to effectively consider the impacts of uncertainties, the problem is transformed into a ‘min-max-min’ formulation. Here, we minimize the first (day-ahead scheduling) and second stage (intra-day operation) costs while uncertainties are maximally affecting the cost function of the second stage. The Benders dual cut algorithm is employed for the solution of the optimization problem. IEEE 34 bus standard network is the benchmark grid for assessing the performances and effectiveness of the developed robust optimization process.","PeriodicalId":187144,"journal":{"name":"2019 IEEE Milan PowerTech","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Robust Optimization Framework for the Day-Ahead Scheduling of Active Distribution Networks including Energy Storage Systems\",\"authors\":\"M. Nick, M. Bozorg, R. Cherkaoui, M. Paolone\",\"doi\":\"10.1109/PTC.2019.8810549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an adaptive robust optimization framework for the day-ahead scheduling of Active Distribution Networks (ADNs) where the controlled devices are distributed Energy Storage Systems (ESSs). First, the targeted problem is formulated using a two-stage optimization approach. The first-stage decisions determine the amount of import/export energy from the external grid at each hour, as well as energy exchanges for each ESS. The second stage deals with the intra-day control, given the first stage decisions. In order to effectively consider the impacts of uncertainties, the problem is transformed into a ‘min-max-min’ formulation. Here, we minimize the first (day-ahead scheduling) and second stage (intra-day operation) costs while uncertainties are maximally affecting the cost function of the second stage. The Benders dual cut algorithm is employed for the solution of the optimization problem. IEEE 34 bus standard network is the benchmark grid for assessing the performances and effectiveness of the developed robust optimization process.\",\"PeriodicalId\":187144,\"journal\":{\"name\":\"2019 IEEE Milan PowerTech\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Milan PowerTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PTC.2019.8810549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Milan PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2019.8810549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种用于主动配电网(ADNs)日前调度的自适应鲁棒优化框架,其中被控设备为分布式储能系统(ess)。首先,采用两阶段优化方法制定目标问题。第一阶段的决策确定每小时从外部电网输入/输出的能量,以及每个ESS的能量交换。根据第一阶段的决策,第二阶段处理日内控制。为了有效地考虑不确定性的影响,将问题转化为“最小-最大-最小”公式。在这里,我们最小化第一阶段(前一天调度)和第二阶段(日内操作)的成本,而不确定性最大程度地影响第二阶段的成本函数。采用Benders双切割算法求解优化问题。IEEE 34总线标准网络是评估所开发的鲁棒优化过程的性能和有效性的基准网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Optimization Framework for the Day-Ahead Scheduling of Active Distribution Networks including Energy Storage Systems
In this paper we present an adaptive robust optimization framework for the day-ahead scheduling of Active Distribution Networks (ADNs) where the controlled devices are distributed Energy Storage Systems (ESSs). First, the targeted problem is formulated using a two-stage optimization approach. The first-stage decisions determine the amount of import/export energy from the external grid at each hour, as well as energy exchanges for each ESS. The second stage deals with the intra-day control, given the first stage decisions. In order to effectively consider the impacts of uncertainties, the problem is transformed into a ‘min-max-min’ formulation. Here, we minimize the first (day-ahead scheduling) and second stage (intra-day operation) costs while uncertainties are maximally affecting the cost function of the second stage. The Benders dual cut algorithm is employed for the solution of the optimization problem. IEEE 34 bus standard network is the benchmark grid for assessing the performances and effectiveness of the developed robust optimization process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信