{"title":"半导体声子诱导的量子扩散","authors":"R. Rosati, F. Rossi","doi":"10.1109/IWCE.2014.6865847","DOIUrl":null,"url":null,"abstract":"Starting from a density-matrix treatment of carrier-phonon interaction based on a recent reformulation of the Markov limit, we provide a detailed investigation of phonon-induced quantum diffusion in semiconductor nanostructures. In particular, as for the case of carrier-carrier relaxation in photoex-cited semiconductors, our analysis shows the failure of simplified dephasing models in describing phonon-induced scattering non-locality, pointing out that such limitation is particularly severe for the case of quasielastic dissipation processes.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Phonon-induced quantum diffusion in semiconductors\",\"authors\":\"R. Rosati, F. Rossi\",\"doi\":\"10.1109/IWCE.2014.6865847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from a density-matrix treatment of carrier-phonon interaction based on a recent reformulation of the Markov limit, we provide a detailed investigation of phonon-induced quantum diffusion in semiconductor nanostructures. In particular, as for the case of carrier-carrier relaxation in photoex-cited semiconductors, our analysis shows the failure of simplified dephasing models in describing phonon-induced scattering non-locality, pointing out that such limitation is particularly severe for the case of quasielastic dissipation processes.\",\"PeriodicalId\":168149,\"journal\":{\"name\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2014.6865847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phonon-induced quantum diffusion in semiconductors
Starting from a density-matrix treatment of carrier-phonon interaction based on a recent reformulation of the Markov limit, we provide a detailed investigation of phonon-induced quantum diffusion in semiconductor nanostructures. In particular, as for the case of carrier-carrier relaxation in photoex-cited semiconductors, our analysis shows the failure of simplified dephasing models in describing phonon-induced scattering non-locality, pointing out that such limitation is particularly severe for the case of quasielastic dissipation processes.