分层业务流程发现:使用生命周期信息识别子流程

Cong Liu
{"title":"分层业务流程发现:使用生命周期信息识别子流程","authors":"Cong Liu","doi":"10.1109/ICWS49710.2020.00062","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce a novel approach to discover hierarchical business process models from event logs with lifecycle information. To handle noise and infrequent behavior, we introduce the notion of nesting ratio to quantify the probability of nesting. All proposed approaches have been implemented in the open-source process mining toolkit ProM. The proposed approach is compared to existing process discovery techniques using both synthetic and real-life lifecycle event logs, and finally we show that our approach outperforms exiting approaches to discover hierarchical processes.","PeriodicalId":338833,"journal":{"name":"2020 IEEE International Conference on Web Services (ICWS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Business Process Discovery: Identifying Sub-processes Using Lifecycle Information\",\"authors\":\"Cong Liu\",\"doi\":\"10.1109/ICWS49710.2020.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to introduce a novel approach to discover hierarchical business process models from event logs with lifecycle information. To handle noise and infrequent behavior, we introduce the notion of nesting ratio to quantify the probability of nesting. All proposed approaches have been implemented in the open-source process mining toolkit ProM. The proposed approach is compared to existing process discovery techniques using both synthetic and real-life lifecycle event logs, and finally we show that our approach outperforms exiting approaches to discover hierarchical processes.\",\"PeriodicalId\":338833,\"journal\":{\"name\":\"2020 IEEE International Conference on Web Services (ICWS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Web Services (ICWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS49710.2020.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS49710.2020.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文旨在介绍一种从包含生命周期信息的事件日志中发现分层业务流程模型的新方法。为了处理噪声和不频繁的行为,我们引入了嵌套率的概念来量化嵌套的概率。所有提出的方法都已在开源过程挖掘工具包ProM中实现。我们将所提出的方法与使用合成和真实生命周期事件日志的现有流程发现技术进行了比较,最后表明我们的方法优于现有的发现分层流程的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Business Process Discovery: Identifying Sub-processes Using Lifecycle Information
This paper aims to introduce a novel approach to discover hierarchical business process models from event logs with lifecycle information. To handle noise and infrequent behavior, we introduce the notion of nesting ratio to quantify the probability of nesting. All proposed approaches have been implemented in the open-source process mining toolkit ProM. The proposed approach is compared to existing process discovery techniques using both synthetic and real-life lifecycle event logs, and finally we show that our approach outperforms exiting approaches to discover hierarchical processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信