自适应人工蜂群数值优化

Sheng-Ta Hsieh, Chun-Ling Lin, Hao-Wen Cheng
{"title":"自适应人工蜂群数值优化","authors":"Sheng-Ta Hsieh, Chun-Ling Lin, Hao-Wen Cheng","doi":"10.1109/CANDARW.2018.00040","DOIUrl":null,"url":null,"abstract":"Artificial bee colony (ABC) is a population-based optimizer. It simulates bees' social behavior for searching better solutions in solution space. Either too large or too small colony size will influence ABC's solution searching performance directly. In order to deal with the problem, in this paper, an adaptive colony is proposed. The adaptive colony will join potential bees or eliminate redundant bees, according solution searching situation. In experiments, 10 test functions of CEC 2015 are adopted for testing proposed method and compare it with three ABC variants. From the results, it can be observed that the proposed method performs better than other three related works.","PeriodicalId":329439,"journal":{"name":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Artificial Bee Colony for Numerical Optimization\",\"authors\":\"Sheng-Ta Hsieh, Chun-Ling Lin, Hao-Wen Cheng\",\"doi\":\"10.1109/CANDARW.2018.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial bee colony (ABC) is a population-based optimizer. It simulates bees' social behavior for searching better solutions in solution space. Either too large or too small colony size will influence ABC's solution searching performance directly. In order to deal with the problem, in this paper, an adaptive colony is proposed. The adaptive colony will join potential bees or eliminate redundant bees, according solution searching situation. In experiments, 10 test functions of CEC 2015 are adopted for testing proposed method and compare it with three ABC variants. From the results, it can be observed that the proposed method performs better than other three related works.\",\"PeriodicalId\":329439,\"journal\":{\"name\":\"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CANDARW.2018.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工蜂群(ABC)是一种基于种群的优化算法。它模拟蜜蜂在解决方案空间中寻找更好解决方案的社会行为。蚁群大小过大或过小都会直接影响ABC算法的寻解性能。为了解决这一问题,本文提出了一种自适应蚁群算法。根据解的搜索情况,适应蜂群将加入潜在的蜜蜂或淘汰多余的蜜蜂。在实验中,采用CEC 2015的10个测试函数对所提出的方法进行测试,并与三种ABC变体进行比较。从结果可以看出,该方法的性能优于其他三种相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Artificial Bee Colony for Numerical Optimization
Artificial bee colony (ABC) is a population-based optimizer. It simulates bees' social behavior for searching better solutions in solution space. Either too large or too small colony size will influence ABC's solution searching performance directly. In order to deal with the problem, in this paper, an adaptive colony is proposed. The adaptive colony will join potential bees or eliminate redundant bees, according solution searching situation. In experiments, 10 test functions of CEC 2015 are adopted for testing proposed method and compare it with three ABC variants. From the results, it can be observed that the proposed method performs better than other three related works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信