{"title":"自主地面车辆多核诱导行为偏差的缓解研究","authors":"J. Sprinkle, B. Eames","doi":"10.1109/ECBS.2011.29","DOIUrl":null,"url":null,"abstract":"Complex systems such as autonomous vehicles frequently utilize a distributed network of computers for sensing, control, and supervisory tasks. A common way to abstract the deployment of the computational nodes that implement the system's behavior is through the utilization of middleware, which treats each atomic processing element as a component. Multiple components may execute on a single node, and nodes are typically heterogeneous in their processing power. For component implementations that use an event-driven model of computation, however, significant behavioral deviations may occur when a single-core computational node is replaced with a multicore node, especially if that computational node is running more than one component. This paper discusses the observed behavioral deviations through a series of simulations with identical initial conditions, performed on various single core and multicore processing platforms. In addition to the empirical demonstration, the paper provides a technique to mitigate the behavioral deviations by inserting a time-triggered buffer between a key set of components, enforcing a loosely time-triggered execution even though the system is still defined through event-triggered components. This preserves existing legacy code, but provides a time-triggered execution.","PeriodicalId":151932,"journal":{"name":"2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Mitigation of MultiCore-Induced Behavioral Deviations of an Autonomous Ground Vehicle\",\"authors\":\"J. Sprinkle, B. Eames\",\"doi\":\"10.1109/ECBS.2011.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex systems such as autonomous vehicles frequently utilize a distributed network of computers for sensing, control, and supervisory tasks. A common way to abstract the deployment of the computational nodes that implement the system's behavior is through the utilization of middleware, which treats each atomic processing element as a component. Multiple components may execute on a single node, and nodes are typically heterogeneous in their processing power. For component implementations that use an event-driven model of computation, however, significant behavioral deviations may occur when a single-core computational node is replaced with a multicore node, especially if that computational node is running more than one component. This paper discusses the observed behavioral deviations through a series of simulations with identical initial conditions, performed on various single core and multicore processing platforms. In addition to the empirical demonstration, the paper provides a technique to mitigate the behavioral deviations by inserting a time-triggered buffer between a key set of components, enforcing a loosely time-triggered execution even though the system is still defined through event-triggered components. This preserves existing legacy code, but provides a time-triggered execution.\",\"PeriodicalId\":151932,\"journal\":{\"name\":\"2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECBS.2011.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECBS.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Mitigation of MultiCore-Induced Behavioral Deviations of an Autonomous Ground Vehicle
Complex systems such as autonomous vehicles frequently utilize a distributed network of computers for sensing, control, and supervisory tasks. A common way to abstract the deployment of the computational nodes that implement the system's behavior is through the utilization of middleware, which treats each atomic processing element as a component. Multiple components may execute on a single node, and nodes are typically heterogeneous in their processing power. For component implementations that use an event-driven model of computation, however, significant behavioral deviations may occur when a single-core computational node is replaced with a multicore node, especially if that computational node is running more than one component. This paper discusses the observed behavioral deviations through a series of simulations with identical initial conditions, performed on various single core and multicore processing platforms. In addition to the empirical demonstration, the paper provides a technique to mitigate the behavioral deviations by inserting a time-triggered buffer between a key set of components, enforcing a loosely time-triggered execution even though the system is still defined through event-triggered components. This preserves existing legacy code, but provides a time-triggered execution.