通过提出的训练系统的动态软计算方法形成聚类

Hemlata Garg, S. Tiwari, Pankaj Sharma
{"title":"通过提出的训练系统的动态软计算方法形成聚类","authors":"Hemlata Garg, S. Tiwari, Pankaj Sharma","doi":"10.1109/csnt.2017.8418555","DOIUrl":null,"url":null,"abstract":"This paper present a soft computing approach to form dynamic cluster by using dynamically drown pattern on behalf of assigned attribute values of entities. The proposed methodology work on a proposed trained system which could work on drown pattern from assigned attribute values those depends on user's preference to form clusters then information could retrieve and categories as per user need. This whole system could reduce much require time to retrieve specific information from the huge data.","PeriodicalId":382417,"journal":{"name":"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic soft computing approach to form cluster through proposed trained system\",\"authors\":\"Hemlata Garg, S. Tiwari, Pankaj Sharma\",\"doi\":\"10.1109/csnt.2017.8418555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper present a soft computing approach to form dynamic cluster by using dynamically drown pattern on behalf of assigned attribute values of entities. The proposed methodology work on a proposed trained system which could work on drown pattern from assigned attribute values those depends on user's preference to form clusters then information could retrieve and categories as per user need. This whole system could reduce much require time to retrieve specific information from the huge data.\",\"PeriodicalId\":382417,\"journal\":{\"name\":\"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csnt.2017.8418555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csnt.2017.8418555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种软计算方法,利用动态淹没模式代表实体分配的属性值形成动态聚类。所提出的方法适用于所提出的训练系统,该系统可以根据用户偏好的指定属性值对淹死模式进行处理,形成聚类,然后根据用户需要检索和分类信息。整个系统可以大大减少从海量数据中检索特定信息所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic soft computing approach to form cluster through proposed trained system
This paper present a soft computing approach to form dynamic cluster by using dynamically drown pattern on behalf of assigned attribute values of entities. The proposed methodology work on a proposed trained system which could work on drown pattern from assigned attribute values those depends on user's preference to form clusters then information could retrieve and categories as per user need. This whole system could reduce much require time to retrieve specific information from the huge data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信