知识发现的多智能体体系结构

Daniel Pop, V. Negru, C. Sandru
{"title":"知识发现的多智能体体系结构","authors":"Daniel Pop, V. Negru, C. Sandru","doi":"10.1109/SYNASC.2006.55","DOIUrl":null,"url":null,"abstract":"Knowledge discovery from databases (KDD) is a complex process composed of several phases: business understanding, data understanding, data preparation, modeling, evaluation and deployment. For each of the phases, there are many algorithms and methods available, the end-user having to select one of them. The AgentDiscover is a multi-agent based intelligent recommendation system for selection of the most appropriate solving method for each phase. This brings added value for both novice and experienced users","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-Agent Architecture for Knowledge Discovery\",\"authors\":\"Daniel Pop, V. Negru, C. Sandru\",\"doi\":\"10.1109/SYNASC.2006.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge discovery from databases (KDD) is a complex process composed of several phases: business understanding, data understanding, data preparation, modeling, evaluation and deployment. For each of the phases, there are many algorithms and methods available, the end-user having to select one of them. The AgentDiscover is a multi-agent based intelligent recommendation system for selection of the most appropriate solving method for each phase. This brings added value for both novice and experienced users\",\"PeriodicalId\":309740,\"journal\":{\"name\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2006.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从数据库中发现知识(KDD)是一个复杂的过程,包括业务理解、数据理解、数据准备、建模、评估和部署几个阶段。对于每个阶段,都有许多可用的算法和方法,最终用户必须从中选择一个。AgentDiscover是一个基于多智能体的智能推荐系统,用于为每个阶段选择最合适的求解方法。这为新手和有经验的用户带来了附加价值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Agent Architecture for Knowledge Discovery
Knowledge discovery from databases (KDD) is a complex process composed of several phases: business understanding, data understanding, data preparation, modeling, evaluation and deployment. For each of the phases, there are many algorithms and methods available, the end-user having to select one of them. The AgentDiscover is a multi-agent based intelligent recommendation system for selection of the most appropriate solving method for each phase. This brings added value for both novice and experienced users
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信