快速涡旋方法的并发实现

F. Pépin, A. Leonard
{"title":"快速涡旋方法的并发实现","authors":"F. Pépin, A. Leonard","doi":"10.1109/DMCC.1990.555420","DOIUrl":null,"url":null,"abstract":"v2u = -V x (we,) . (3) Vortex methods are a powerfil tool for the numerical simulation of incompressible flows at high Reynolds number. They are based on a discrete representation of the vorticity field and in the inviscid limit, the computational elements, or vortices, are simply advected at the local fluid velocity. The numerical approximations transform the vorticity equation, a non-linear PDE, into a N-body problem. The S(N2) time complexity usually associated with these problems has limited the number of computational elements to a few thousands. This paper is concerned with the concurrent implementation of fast vortex methods that reduce the time complexity to U(N1ogN). The fast algorithm that is used combines a binary tree data structure with high order expansions for the induced velocity field. The implementation of this particular algorithm on an MIMD archilecture is discussed. Vortex Methods","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concurrent Implementation of a Fast Vortex Method\",\"authors\":\"F. Pépin, A. Leonard\",\"doi\":\"10.1109/DMCC.1990.555420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"v2u = -V x (we,) . (3) Vortex methods are a powerfil tool for the numerical simulation of incompressible flows at high Reynolds number. They are based on a discrete representation of the vorticity field and in the inviscid limit, the computational elements, or vortices, are simply advected at the local fluid velocity. The numerical approximations transform the vorticity equation, a non-linear PDE, into a N-body problem. The S(N2) time complexity usually associated with these problems has limited the number of computational elements to a few thousands. This paper is concerned with the concurrent implementation of fast vortex methods that reduce the time complexity to U(N1ogN). The fast algorithm that is used combines a binary tree data structure with high order expansions for the induced velocity field. The implementation of this particular algorithm on an MIMD archilecture is discussed. Vortex Methods\",\"PeriodicalId\":204431,\"journal\":{\"name\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1990.555420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.555420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

v2u = - vx(我们,)(3)涡旋法是高雷诺数不可压缩流动数值模拟的有力工具。它们基于涡度场的离散表示,在无粘极限下,计算元素或涡以局部流体速度简单地平流。数值近似将涡度方程这一非线性偏微分方程转化为n体问题。通常与这些问题相关的S(N2)时间复杂度将计算元素的数量限制在几千个。本文研究了将时间复杂度降低到U(N1ogN)的快速涡旋方法的并行实现。所使用的快速算法将二叉树数据结构与诱导速度场的高阶展开相结合。讨论了该算法在MIMD体系结构上的实现。涡方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent Implementation of a Fast Vortex Method
v2u = -V x (we,) . (3) Vortex methods are a powerfil tool for the numerical simulation of incompressible flows at high Reynolds number. They are based on a discrete representation of the vorticity field and in the inviscid limit, the computational elements, or vortices, are simply advected at the local fluid velocity. The numerical approximations transform the vorticity equation, a non-linear PDE, into a N-body problem. The S(N2) time complexity usually associated with these problems has limited the number of computational elements to a few thousands. This paper is concerned with the concurrent implementation of fast vortex methods that reduce the time complexity to U(N1ogN). The fast algorithm that is used combines a binary tree data structure with high order expansions for the induced velocity field. The implementation of this particular algorithm on an MIMD archilecture is discussed. Vortex Methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信