积分方程的比较技术

M. Meehan, D. O’Regan
{"title":"积分方程的比较技术","authors":"M. Meehan, D. O’Regan","doi":"10.33232/bims.0042.54.71","DOIUrl":null,"url":null,"abstract":"Using the results obtained for (1:1) in Se tion 2, a omparison te hnique is presented in Se tion 3 whi h rstly guarantees that the solution y 2 C[0; T ) of (1:1) (with T = 1), is su h that lim t!1 y(t) exists, and se ondly, allows us to read o what this limit is. The te hnique is illustrated with some examples. A result of Miller [9℄, whi h pertains to a spe ial ase of (1:1) is in luded and dis ussed for ompleteness.","PeriodicalId":103198,"journal":{"name":"Irish Mathematical Society Bulletin","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison technique for integral equations\",\"authors\":\"M. Meehan, D. O’Regan\",\"doi\":\"10.33232/bims.0042.54.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the results obtained for (1:1) in Se tion 2, a omparison te hnique is presented in Se tion 3 whi h rstly guarantees that the solution y 2 C[0; T ) of (1:1) (with T = 1), is su h that lim t!1 y(t) exists, and se ondly, allows us to read o what this limit is. The te hnique is illustrated with some examples. A result of Miller [9℄, whi h pertains to a spe ial ase of (1:1) is in luded and dis ussed for ompleteness.\",\"PeriodicalId\":103198,\"journal\":{\"name\":\"Irish Mathematical Society Bulletin\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irish Mathematical Society Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33232/bims.0042.54.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Mathematical Society Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33232/bims.0042.54.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用第2节中(1:1)的结果,在第3节中提出了一种比较方法,该方法首先保证了解为2c [0;(1∶1)(T = 1)的T = h,等于等于T !1y (t)是存在的,它只允许我们读出这个极限是什么。用一些例子说明了这种方法。文中引用了Miller[9℄]的一个结果,该结果属于(1:1)的特例,并对其完整性进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison technique for integral equations
Using the results obtained for (1:1) in Se tion 2, a omparison te hnique is presented in Se tion 3 whi h rstly guarantees that the solution y 2 C[0; T ) of (1:1) (with T = 1), is su h that lim t!1 y(t) exists, and se ondly, allows us to read o what this limit is. The te hnique is illustrated with some examples. A result of Miller [9℄, whi h pertains to a spe ial ase of (1:1) is in luded and dis ussed for ompleteness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信