{"title":"积分方程的比较技术","authors":"M. Meehan, D. O’Regan","doi":"10.33232/bims.0042.54.71","DOIUrl":null,"url":null,"abstract":"Using the results obtained for (1:1) in Se tion 2, a omparison te hnique is presented in Se tion 3 whi h rstly guarantees that the solution y 2 C[0; T ) of (1:1) (with T = 1), is su h that lim t!1 y(t) exists, and se ondly, allows us to read o what this limit is. The te hnique is illustrated with some examples. A result of Miller [9℄, whi h pertains to a spe ial ase of (1:1) is in luded and dis ussed for ompleteness.","PeriodicalId":103198,"journal":{"name":"Irish Mathematical Society Bulletin","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison technique for integral equations\",\"authors\":\"M. Meehan, D. O’Regan\",\"doi\":\"10.33232/bims.0042.54.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the results obtained for (1:1) in Se tion 2, a omparison te hnique is presented in Se tion 3 whi h rstly guarantees that the solution y 2 C[0; T ) of (1:1) (with T = 1), is su h that lim t!1 y(t) exists, and se ondly, allows us to read o what this limit is. The te hnique is illustrated with some examples. A result of Miller [9℄, whi h pertains to a spe ial ase of (1:1) is in luded and dis ussed for ompleteness.\",\"PeriodicalId\":103198,\"journal\":{\"name\":\"Irish Mathematical Society Bulletin\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irish Mathematical Society Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33232/bims.0042.54.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Mathematical Society Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33232/bims.0042.54.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using the results obtained for (1:1) in Se tion 2, a omparison te hnique is presented in Se tion 3 whi h rstly guarantees that the solution y 2 C[0; T ) of (1:1) (with T = 1), is su h that lim t!1 y(t) exists, and se ondly, allows us to read o what this limit is. The te hnique is illustrated with some examples. A result of Miller [9℄, whi h pertains to a spe ial ase of (1:1) is in luded and dis ussed for ompleteness.