基于遮挡的积雪模拟

David Foldes, Bedrich Benes
{"title":"基于遮挡的积雪模拟","authors":"David Foldes, Bedrich Benes","doi":"10.2312/PE/vriphys/vriphys07/035-041","DOIUrl":null,"url":null,"abstract":"We present a fast technique for the simulation of accumulated snow. Our technique is based on two phenomena; local occlusion of small holes and ditches, and the global influence of a skylight. We use ambient occlusion to predict the shape and location of snow accumulation and direct illumination from the skylight to simulate the melting and sublimation of snow as dissipation. The snow is simulated as a 3D layer that is added to the input scene. Our technique is a fast approximation and does not aim to be used for small and local features within a simulation. A scene with over 500k triangles can be calculated in about seven minutes on a standard computer and the major part of the calculation runs on the GPU. Results of our algorithm should be used for large distance views.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Occlusion-Based Snow Accumulation Simulation\",\"authors\":\"David Foldes, Bedrich Benes\",\"doi\":\"10.2312/PE/vriphys/vriphys07/035-041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fast technique for the simulation of accumulated snow. Our technique is based on two phenomena; local occlusion of small holes and ditches, and the global influence of a skylight. We use ambient occlusion to predict the shape and location of snow accumulation and direct illumination from the skylight to simulate the melting and sublimation of snow as dissipation. The snow is simulated as a 3D layer that is added to the input scene. Our technique is a fast approximation and does not aim to be used for small and local features within a simulation. A scene with over 500k triangles can be calculated in about seven minutes on a standard computer and the major part of the calculation runs on the GPU. Results of our algorithm should be used for large distance views.\",\"PeriodicalId\":446363,\"journal\":{\"name\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PE/vriphys/vriphys07/035-041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Virtual Reality Interactions and Physical Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PE/vriphys/vriphys07/035-041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

提出了一种快速模拟积雪的方法。我们的技术基于两种现象;小孔和沟渠的局部遮挡,以及天窗的全局影响。我们使用环境遮挡来预测积雪的形状和位置,并使用天窗的直接照明来模拟积雪的融化和升华。雪被模拟成一个3D层,添加到输入场景中。我们的技术是一种快速逼近,并不旨在用于模拟中的小和局部特征。在标准计算机上,一个超过50万个三角形的场景可以在大约7分钟内计算出来,计算的主要部分在GPU上运行。我们的算法结果应该用于大距离视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occlusion-Based Snow Accumulation Simulation
We present a fast technique for the simulation of accumulated snow. Our technique is based on two phenomena; local occlusion of small holes and ditches, and the global influence of a skylight. We use ambient occlusion to predict the shape and location of snow accumulation and direct illumination from the skylight to simulate the melting and sublimation of snow as dissipation. The snow is simulated as a 3D layer that is added to the input scene. Our technique is a fast approximation and does not aim to be used for small and local features within a simulation. A scene with over 500k triangles can be calculated in about seven minutes on a standard computer and the major part of the calculation runs on the GPU. Results of our algorithm should be used for large distance views.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信