{"title":"地缘政治风险事件的时间点语言模型","authors":"Matthias Apel, A. Betzer, B. Scherer","doi":"10.3905/jfds.2022.1.113","DOIUrl":null,"url":null,"abstract":"In this article, the authors show how to build a real-time geopolitical risk index from news data using textual analysis. The presented method defines a point-in-time dictionary of terms related to political tension. It does not rely on the in-sample definition of a set of n-grams that are likely chosen and updated with hindsight bias. The proposed model can be applied to any topic and is language agnostic. Only a few topic-related words are required to initialize the buildup of a dynamically self-adjusting dictionary. The authors show that their approach can resemble the results of other more supervised methods. The findings indicate how topic identification and news index construction may benefit from a time-dependent dictionary generation.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"71 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-in-Time Language Model for Geopolitical Risk Events\",\"authors\":\"Matthias Apel, A. Betzer, B. Scherer\",\"doi\":\"10.3905/jfds.2022.1.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors show how to build a real-time geopolitical risk index from news data using textual analysis. The presented method defines a point-in-time dictionary of terms related to political tension. It does not rely on the in-sample definition of a set of n-grams that are likely chosen and updated with hindsight bias. The proposed model can be applied to any topic and is language agnostic. Only a few topic-related words are required to initialize the buildup of a dynamically self-adjusting dictionary. The authors show that their approach can resemble the results of other more supervised methods. The findings indicate how topic identification and news index construction may benefit from a time-dependent dictionary generation.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"71 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jfds.2022.1.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2022.1.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Point-in-Time Language Model for Geopolitical Risk Events
In this article, the authors show how to build a real-time geopolitical risk index from news data using textual analysis. The presented method defines a point-in-time dictionary of terms related to political tension. It does not rely on the in-sample definition of a set of n-grams that are likely chosen and updated with hindsight bias. The proposed model can be applied to any topic and is language agnostic. Only a few topic-related words are required to initialize the buildup of a dynamically self-adjusting dictionary. The authors show that their approach can resemble the results of other more supervised methods. The findings indicate how topic identification and news index construction may benefit from a time-dependent dictionary generation.