基于激励的需求响应客户基线负荷估计的长短期记忆递归神经网络

J. Oyedokun, Shengrong Bu, Zhu Han, Xue Liu
{"title":"基于激励的需求响应客户基线负荷估计的长短期记忆递归神经网络","authors":"J. Oyedokun, Shengrong Bu, Zhu Han, Xue Liu","doi":"10.1109/ISGTEurope.2019.8905582","DOIUrl":null,"url":null,"abstract":"The transition to an intelligent, reliable and efficient smart grid with a high penetration of renewable energy drives the need to maximise the utilization of customers demand response potential. The availability of smart meter data means this potential can be more accurately estimated and suitable demand response (DR) programs can be targeted to customers for load shifting, clipping and reduction. In this paper, we focus on estimating customer demand baseline for incentive-based DR. We propose a long short-term memory recurrent neural network framework for customer baseline estimation using previous like days data during DR events period. We test the proposed methodology on the publicly available Irish smart meter data and results shows a significant increase in baseline estimation accuracy when compared to traditional baseline estimation methods.","PeriodicalId":305933,"journal":{"name":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Customer Baseline Load Estimation for Incentive-Based Demand Response Using Long Short-Term Memory Recurrent Neural Network\",\"authors\":\"J. Oyedokun, Shengrong Bu, Zhu Han, Xue Liu\",\"doi\":\"10.1109/ISGTEurope.2019.8905582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transition to an intelligent, reliable and efficient smart grid with a high penetration of renewable energy drives the need to maximise the utilization of customers demand response potential. The availability of smart meter data means this potential can be more accurately estimated and suitable demand response (DR) programs can be targeted to customers for load shifting, clipping and reduction. In this paper, we focus on estimating customer demand baseline for incentive-based DR. We propose a long short-term memory recurrent neural network framework for customer baseline estimation using previous like days data during DR events period. We test the proposed methodology on the publicly available Irish smart meter data and results shows a significant increase in baseline estimation accuracy when compared to traditional baseline estimation methods.\",\"PeriodicalId\":305933,\"journal\":{\"name\":\"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2019.8905582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2019.8905582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

向具有高可再生能源渗透率的智能、可靠和高效的智能电网过渡,推动了最大限度地利用客户需求响应潜力的需求。智能电表数据的可用性意味着可以更准确地估计这种潜力,并且可以针对客户进行适当的需求响应(DR)计划,以进行负载转移,裁剪和减少。在本文中,我们专注于估计基于激励的DR的客户需求基线。我们提出了一个长短期记忆递归神经网络框架,用于在DR事件期间使用以前的类似天数数据估计客户基线。我们在公开可用的爱尔兰智能电表数据上测试了提出的方法,结果显示,与传统的基线估计方法相比,基线估计精度显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Customer Baseline Load Estimation for Incentive-Based Demand Response Using Long Short-Term Memory Recurrent Neural Network
The transition to an intelligent, reliable and efficient smart grid with a high penetration of renewable energy drives the need to maximise the utilization of customers demand response potential. The availability of smart meter data means this potential can be more accurately estimated and suitable demand response (DR) programs can be targeted to customers for load shifting, clipping and reduction. In this paper, we focus on estimating customer demand baseline for incentive-based DR. We propose a long short-term memory recurrent neural network framework for customer baseline estimation using previous like days data during DR events period. We test the proposed methodology on the publicly available Irish smart meter data and results shows a significant increase in baseline estimation accuracy when compared to traditional baseline estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信