FRP筋加固混凝土桥面板的有限元模拟

A. El-Ragaby, E. El-Salakawy, B. Benmokrane
{"title":"FRP筋加固混凝土桥面板的有限元模拟","authors":"A. El-Ragaby, E. El-Salakawy, B. Benmokrane","doi":"10.14359/14873","DOIUrl":null,"url":null,"abstract":"Synopsis: This paper presents the results of a finite element analysis for three different bridges that have been recently constructed and tested in North America. In these bridges, different types of reinforcement (steel and FRP reinforcing bars) were used as reinforcement for the concrete deck slabs. Two bridges, Magog Bridge and Cookshire-Eaton Bridge, are located in Quebec, Canada, while the third one, Morristown Bridge, is located in Vermont, USA. The three bridges are girder-type with main girders made of either steel or prestressed concrete. The main girders were either simply or continuously supported over spans ranging from 26.2 to 43.0 m. The deck was a 200 to 230 mm thickness concrete slab continuous over spans of 2.30 to 2.8 m. Different types, sizes, and reinforcement ratios of glass and carbon FRP reinforcing bars were used. Furthermore, the three bridges are located on different road or highway categories, which mean different traffic volumes and environments. The bridges were tested for service performance using calibrated truckloads. The results of the field load tests were used to verify the finite element model. Comparisons showed that FEM can predict the behavior of such elements. Then, the model was used to investigate the effect of the FRP reinforcement type and ratio on the service and ultimate behavior of these bridge decks. According to the findings, a proposed reinforcement ratio was recommended and verified using the FEM to meet the strength and serviceability requirements of the design codes.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Finite Element Modeling of Concrete Bridge Deck Slabs Reinforced with FRP Bars\",\"authors\":\"A. El-Ragaby, E. El-Salakawy, B. Benmokrane\",\"doi\":\"10.14359/14873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis: This paper presents the results of a finite element analysis for three different bridges that have been recently constructed and tested in North America. In these bridges, different types of reinforcement (steel and FRP reinforcing bars) were used as reinforcement for the concrete deck slabs. Two bridges, Magog Bridge and Cookshire-Eaton Bridge, are located in Quebec, Canada, while the third one, Morristown Bridge, is located in Vermont, USA. The three bridges are girder-type with main girders made of either steel or prestressed concrete. The main girders were either simply or continuously supported over spans ranging from 26.2 to 43.0 m. The deck was a 200 to 230 mm thickness concrete slab continuous over spans of 2.30 to 2.8 m. Different types, sizes, and reinforcement ratios of glass and carbon FRP reinforcing bars were used. Furthermore, the three bridges are located on different road or highway categories, which mean different traffic volumes and environments. The bridges were tested for service performance using calibrated truckloads. The results of the field load tests were used to verify the finite element model. Comparisons showed that FEM can predict the behavior of such elements. Then, the model was used to investigate the effect of the FRP reinforcement type and ratio on the service and ultimate behavior of these bridge decks. According to the findings, a proposed reinforcement ratio was recommended and verified using the FEM to meet the strength and serviceability requirements of the design codes.\",\"PeriodicalId\":151616,\"journal\":{\"name\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/14873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要:本文介绍了最近在北美建造和测试的三座不同桥梁的有限元分析结果。在这些桥梁中,不同类型的钢筋(钢和FRP钢筋)被用作混凝土面板的钢筋。两座桥,Magog桥和Cookshire-Eaton桥,位于加拿大魁北克,而第三座桥,Morristown桥,位于美国佛蒙特州。三座桥均为主梁式,主梁由钢筋或预应力混凝土构成。主梁采用简支式或连续式支撑,跨度从26.2米到43.0米不等。桥面为200至230毫米厚的连续混凝土板,跨度为2.30至2.8米。使用了不同类型、尺寸和配筋率的玻璃和碳FRP筋。此外,三座桥梁位于不同的道路或公路类别上,这意味着不同的交通量和环境。使用校准过的卡车荷载对桥梁的使用性能进行了测试。利用现场荷载试验结果对有限元模型进行了验证。对比表明,有限元法可以预测此类构件的受力性能。然后,利用该模型研究了FRP加固类型和配比对桥面使用和极限性能的影响。根据研究结果,提出了配筋率建议,并用有限元法进行了验证,以满足设计规范的强度和使用性能要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Modeling of Concrete Bridge Deck Slabs Reinforced with FRP Bars
Synopsis: This paper presents the results of a finite element analysis for three different bridges that have been recently constructed and tested in North America. In these bridges, different types of reinforcement (steel and FRP reinforcing bars) were used as reinforcement for the concrete deck slabs. Two bridges, Magog Bridge and Cookshire-Eaton Bridge, are located in Quebec, Canada, while the third one, Morristown Bridge, is located in Vermont, USA. The three bridges are girder-type with main girders made of either steel or prestressed concrete. The main girders were either simply or continuously supported over spans ranging from 26.2 to 43.0 m. The deck was a 200 to 230 mm thickness concrete slab continuous over spans of 2.30 to 2.8 m. Different types, sizes, and reinforcement ratios of glass and carbon FRP reinforcing bars were used. Furthermore, the three bridges are located on different road or highway categories, which mean different traffic volumes and environments. The bridges were tested for service performance using calibrated truckloads. The results of the field load tests were used to verify the finite element model. Comparisons showed that FEM can predict the behavior of such elements. Then, the model was used to investigate the effect of the FRP reinforcement type and ratio on the service and ultimate behavior of these bridge decks. According to the findings, a proposed reinforcement ratio was recommended and verified using the FEM to meet the strength and serviceability requirements of the design codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信