蚁群算法在检验规划中的应用

R. Schmitt, Hanqing Zheng, Xiongfei Zhao, Niels Konig, Raphael Rocha Coelho
{"title":"蚁群算法在检验规划中的应用","authors":"R. Schmitt, Hanqing Zheng, Xiongfei Zhao, Niels Konig, Raphael Rocha Coelho","doi":"10.1109/CIMSA.2009.5069921","DOIUrl":null,"url":null,"abstract":"Within this paper the application of an ant colony optimization (ACO) algorithm to inspection planning is presented. Since inspection planning is a time consuming task, optimizing these activities plays a major role in the quality inspection field. In this paper the extraction procedures of local inspection path planning (LIPP) and measurement device selection (MDS) to travelling salesman problem (TSP) and subset problem are presented respectively. An ACO algorithm based on Max-Min Ant System (MMAS) is presented for solving the problems. Experiment on industrial workpiece shows the applicability of ACO to inspection planning.","PeriodicalId":178669,"journal":{"name":"2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of ant colony optimization to inspection planning\",\"authors\":\"R. Schmitt, Hanqing Zheng, Xiongfei Zhao, Niels Konig, Raphael Rocha Coelho\",\"doi\":\"10.1109/CIMSA.2009.5069921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within this paper the application of an ant colony optimization (ACO) algorithm to inspection planning is presented. Since inspection planning is a time consuming task, optimizing these activities plays a major role in the quality inspection field. In this paper the extraction procedures of local inspection path planning (LIPP) and measurement device selection (MDS) to travelling salesman problem (TSP) and subset problem are presented respectively. An ACO algorithm based on Max-Min Ant System (MMAS) is presented for solving the problems. Experiment on industrial workpiece shows the applicability of ACO to inspection planning.\",\"PeriodicalId\":178669,\"journal\":{\"name\":\"2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2009.5069921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2009.5069921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了蚁群优化算法在检验规划中的应用。由于检验计划是一项耗时的任务,优化这些活动在质量检验领域起着重要作用。本文分别给出了旅行商问题(TSP)和子集问题的局部检测路径规划(LIPP)和测量设备选择(MDS)的提取方法。提出了一种基于最大最小蚂蚁系统(MMAS)的蚁群算法。在工业工件上的实验证明了蚁群算法在检验规划中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of ant colony optimization to inspection planning
Within this paper the application of an ant colony optimization (ACO) algorithm to inspection planning is presented. Since inspection planning is a time consuming task, optimizing these activities plays a major role in the quality inspection field. In this paper the extraction procedures of local inspection path planning (LIPP) and measurement device selection (MDS) to travelling salesman problem (TSP) and subset problem are presented respectively. An ACO algorithm based on Max-Min Ant System (MMAS) is presented for solving the problems. Experiment on industrial workpiece shows the applicability of ACO to inspection planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信