一种基于LMI的滑绳平衡控制器设计方法

K. Iqbal
{"title":"一种基于LMI的滑绳平衡控制器设计方法","authors":"K. Iqbal","doi":"10.1109/ICCA.2019.8900024","DOIUrl":null,"url":null,"abstract":"Balancing over a tight rope or slackline is a challenging task as the stabilizing moments must be internally generated by moving the arms. In this study, we use a two-segment biomechanical model of the subject to investigate postural stability and control during the balancing task on slackline. The assumed model has three degree of freedom (DoF), including slackline displacement, body orientation, and the arm rotation that also generates the stabilizing torque. We assume vestibular sensing of the body rotation rate and emulate a neural estimator in the brain that reconstructs the missing state variables. We employ linear matrix inequality (LMI) framework to design the controller-estimator to stabilize the proposed biomechanical model. The nonlinear model is then simulated to ensure postural stability during the execution of balancing task over slackline.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An LMI Approach to Controller Design for Balancing over Slackline\",\"authors\":\"K. Iqbal\",\"doi\":\"10.1109/ICCA.2019.8900024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Balancing over a tight rope or slackline is a challenging task as the stabilizing moments must be internally generated by moving the arms. In this study, we use a two-segment biomechanical model of the subject to investigate postural stability and control during the balancing task on slackline. The assumed model has three degree of freedom (DoF), including slackline displacement, body orientation, and the arm rotation that also generates the stabilizing torque. We assume vestibular sensing of the body rotation rate and emulate a neural estimator in the brain that reconstructs the missing state variables. We employ linear matrix inequality (LMI) framework to design the controller-estimator to stabilize the proposed biomechanical model. The nonlinear model is then simulated to ensure postural stability during the execution of balancing task over slackline.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8900024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8900024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一根紧绳或松弛绳上保持平衡是一项具有挑战性的任务,因为稳定力矩必须通过移动手臂在内部产生。在这项研究中,我们使用受试者的两节段生物力学模型来研究在滑绳上平衡任务时的姿势稳定性和控制。假设的模型有三个自由度,包括松弛线位移、身体方向和产生稳定力矩的手臂旋转。我们假设前庭感知身体旋转速率,并模拟大脑中的神经估计器来重建缺失的状态变量。我们采用线性矩阵不等式(LMI)框架来设计控制器-估计器以稳定所提出的生物力学模型。然后对非线性模型进行了仿真,以确保在松弛线上执行平衡任务时的姿态稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An LMI Approach to Controller Design for Balancing over Slackline
Balancing over a tight rope or slackline is a challenging task as the stabilizing moments must be internally generated by moving the arms. In this study, we use a two-segment biomechanical model of the subject to investigate postural stability and control during the balancing task on slackline. The assumed model has three degree of freedom (DoF), including slackline displacement, body orientation, and the arm rotation that also generates the stabilizing torque. We assume vestibular sensing of the body rotation rate and emulate a neural estimator in the brain that reconstructs the missing state variables. We employ linear matrix inequality (LMI) framework to design the controller-estimator to stabilize the proposed biomechanical model. The nonlinear model is then simulated to ensure postural stability during the execution of balancing task over slackline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信