功能即服务平台的冷启动感知容量规划

Alim Ul Gias, G. Casale
{"title":"功能即服务平台的冷启动感知容量规划","authors":"Alim Ul Gias, G. Casale","doi":"10.1109/MASCOTS50786.2020.9285966","DOIUrl":null,"url":null,"abstract":"Function-as-a-Service (FaaS) has become increasingly popular in the software industry due to the implied cost-savings in event-driven workloads and its synergy with DevOps. To size an on-premise FaaS platform, it is important to estimate the required CPU and memory capacity to serve the expected loads. Given the service-level agreements, it is however challenging to take the cold start issue into account during the sizing process. We have investigated the similarity of this problem with the hit rate improvement problem in Time to Live (TTL) caches and concluded that solutions for TTL cache, although potentially applicable, lead to over-provisioning in FaaS. Thus, we propose a novel approach, COCOA, to solve this issue. COCOA uses a queueing-based approach to assess the effect of cold starts on FaaS response times. It also considers different memory consumption values depending on whether the function is idle or in execution. Using an event-driven FaaS simulator, FaasSim, that we have developed, we show that COCOA can reduce overprovisioning by over 70% under some of the workloads we have considered, while satisfying the service-level agreements.","PeriodicalId":272614,"journal":{"name":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"COCOA: Cold Start Aware Capacity Planning for Function-as-a-Service Platforms\",\"authors\":\"Alim Ul Gias, G. Casale\",\"doi\":\"10.1109/MASCOTS50786.2020.9285966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function-as-a-Service (FaaS) has become increasingly popular in the software industry due to the implied cost-savings in event-driven workloads and its synergy with DevOps. To size an on-premise FaaS platform, it is important to estimate the required CPU and memory capacity to serve the expected loads. Given the service-level agreements, it is however challenging to take the cold start issue into account during the sizing process. We have investigated the similarity of this problem with the hit rate improvement problem in Time to Live (TTL) caches and concluded that solutions for TTL cache, although potentially applicable, lead to over-provisioning in FaaS. Thus, we propose a novel approach, COCOA, to solve this issue. COCOA uses a queueing-based approach to assess the effect of cold starts on FaaS response times. It also considers different memory consumption values depending on whether the function is idle or in execution. Using an event-driven FaaS simulator, FaasSim, that we have developed, we show that COCOA can reduce overprovisioning by over 70% under some of the workloads we have considered, while satisfying the service-level agreements.\",\"PeriodicalId\":272614,\"journal\":{\"name\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS50786.2020.9285966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS50786.2020.9285966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

功能即服务(FaaS)在软件行业中变得越来越流行,这是由于在事件驱动的工作负载中隐含的成本节约以及它与DevOps的协同作用。要确定本地FaaS平台的大小,重要的是要估计为预期负载服务所需的CPU和内存容量。然而,考虑到服务水平协议,在分级过程中考虑冷启动问题是一项挑战。我们研究了这个问题与生存时间(TTL)缓存中的命中率提高问题的相似性,并得出结论,TTL缓存的解决方案虽然可能适用,但会导致FaaS中的过度供应。因此,我们提出一种新颖的方法,COCOA,来解决这个问题。COCOA使用基于队列的方法来评估冷启动对FaaS响应时间的影响。它还根据函数是空闲还是正在执行考虑不同的内存消耗值。使用我们开发的事件驱动FaaS模拟器FaasSim,我们证明了COCOA可以在满足服务水平协议的同时,在我们考虑的某些工作负载下减少超过70%的过度供应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COCOA: Cold Start Aware Capacity Planning for Function-as-a-Service Platforms
Function-as-a-Service (FaaS) has become increasingly popular in the software industry due to the implied cost-savings in event-driven workloads and its synergy with DevOps. To size an on-premise FaaS platform, it is important to estimate the required CPU and memory capacity to serve the expected loads. Given the service-level agreements, it is however challenging to take the cold start issue into account during the sizing process. We have investigated the similarity of this problem with the hit rate improvement problem in Time to Live (TTL) caches and concluded that solutions for TTL cache, although potentially applicable, lead to over-provisioning in FaaS. Thus, we propose a novel approach, COCOA, to solve this issue. COCOA uses a queueing-based approach to assess the effect of cold starts on FaaS response times. It also considers different memory consumption values depending on whether the function is idle or in execution. Using an event-driven FaaS simulator, FaasSim, that we have developed, we show that COCOA can reduce overprovisioning by over 70% under some of the workloads we have considered, while satisfying the service-level agreements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信