卷积代数的群形态学

M. Lysenko, S. Nelaturi, V. Shapiro
{"title":"卷积代数的群形态学","authors":"M. Lysenko, S. Nelaturi, V. Shapiro","doi":"10.1145/1839778.1839781","DOIUrl":null,"url":null,"abstract":"Group morphology is an extension of mathematical morphology with classical Minkowski sum and difference operations generalized respectively to Minkowski product and quotient operations over arbitrary groups. We show that group morphology is a proper setting for unifying, formulating and solving a number of important problems, including translational and rotational configuration space problems, mechanism workspace computation, and symmetry detection. The proposed computational approach is based on group convolution algebras, which extend classical convolutions and the Fourier transform to non-commutative groups. In particular, we show that all Minkowski product and quotient operations may be represented implicitly as sublevel sets of the same real-valued convolution function.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Group morphology with convolution algebras\",\"authors\":\"M. Lysenko, S. Nelaturi, V. Shapiro\",\"doi\":\"10.1145/1839778.1839781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Group morphology is an extension of mathematical morphology with classical Minkowski sum and difference operations generalized respectively to Minkowski product and quotient operations over arbitrary groups. We show that group morphology is a proper setting for unifying, formulating and solving a number of important problems, including translational and rotational configuration space problems, mechanism workspace computation, and symmetry detection. The proposed computational approach is based on group convolution algebras, which extend classical convolutions and the Fourier transform to non-commutative groups. In particular, we show that all Minkowski product and quotient operations may be represented implicitly as sublevel sets of the same real-valued convolution function.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1839778.1839781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1839778.1839781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

群形态学是数学形态学的扩展,将经典的闵可夫斯基和运算和差分运算分别推广到任意群上的闵可夫斯基积运算和商运算。我们证明了群形态学是统一、表述和解决许多重要问题的适当设置,包括平移和旋转构型空间问题、机构工作空间计算和对称性检测。所提出的计算方法是基于群卷积代数,将经典卷积和傅里叶变换扩展到非交换群。特别地,我们证明了所有Minkowski积和商运算可以隐式地表示为相同实值卷积函数的子水平集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group morphology with convolution algebras
Group morphology is an extension of mathematical morphology with classical Minkowski sum and difference operations generalized respectively to Minkowski product and quotient operations over arbitrary groups. We show that group morphology is a proper setting for unifying, formulating and solving a number of important problems, including translational and rotational configuration space problems, mechanism workspace computation, and symmetry detection. The proposed computational approach is based on group convolution algebras, which extend classical convolutions and the Fourier transform to non-commutative groups. In particular, we show that all Minkowski product and quotient operations may be represented implicitly as sublevel sets of the same real-valued convolution function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信