基于mds的产品代码停止集

Fanny Jardel, J. Boutros, M. Sarkiss
{"title":"基于mds的产品代码停止集","authors":"Fanny Jardel, J. Boutros, M. Sarkiss","doi":"10.1109/ISIT.2016.7541597","DOIUrl":null,"url":null,"abstract":"Stopping sets for MDS-based product codes under iterative row-column algebraic decoding are analyzed in this paper. A union bound to the performance of iterative decoding is established for the independent symbol erasure channel. This bound is tight at low and very low error rates. We also proved that the performance of iterative decoding reaches the performance of Maximum-Likelihood decoding at vanishing channel erasure probability. Numerical results are shown for product codes at different coding rates.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stopping sets for MDS-based product codes\",\"authors\":\"Fanny Jardel, J. Boutros, M. Sarkiss\",\"doi\":\"10.1109/ISIT.2016.7541597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stopping sets for MDS-based product codes under iterative row-column algebraic decoding are analyzed in this paper. A union bound to the performance of iterative decoding is established for the independent symbol erasure channel. This bound is tight at low and very low error rates. We also proved that the performance of iterative decoding reaches the performance of Maximum-Likelihood decoding at vanishing channel erasure probability. Numerical results are shown for product codes at different coding rates.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文分析了迭代行列代数译码下基于mds的产品编码的停止集。针对独立的符号擦除信道,建立了迭代译码性能的联合约束。在低错误率和非常低的错误率下,这个界限是紧密的。我们还证明了迭代译码的性能在信道擦除概率消失时达到最大似然译码的性能。给出了不同编码速率下产品编码的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stopping sets for MDS-based product codes
Stopping sets for MDS-based product codes under iterative row-column algebraic decoding are analyzed in this paper. A union bound to the performance of iterative decoding is established for the independent symbol erasure channel. This bound is tight at low and very low error rates. We also proved that the performance of iterative decoding reaches the performance of Maximum-Likelihood decoding at vanishing channel erasure probability. Numerical results are shown for product codes at different coding rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信