G. Cattan, Anton Andreev, César Mendoza, M. Congedo
{"title":"被动头戴式虚拟现实设备对脑电信号质量的影响","authors":"G. Cattan, Anton Andreev, César Mendoza, M. Congedo","doi":"10.2312/vriphys.20181064","DOIUrl":null,"url":null,"abstract":"Thanks to the low price, the use of a head-mounted device (HMD) equipped with a smartphone is currently a common setup for virtual reality (VR). Brain-computer interface (BCI) based on electroencephalography (EEG) is a promising technology to enrich the VR experience. However, the effect of using HMDs on the acquisition of EEG signals remains still unknown. In fact, the smartphone is placed close to the head where EEG sensors are located, thus the smartphone's electronics may perturb the acquisition of the EEG signal. In the present study, we compare the spectral properties of the EEG signal acquired on 12 subjects wearing a SamsungGear HMD equipped with a Samsung S6 smartphone turned on and off. Our study shows that there is no significant difference in the spectral properties of the EEG in these two experimental conditions. We conclude that a smartphone-based HMD is compatible with EEG technology. Some technical problems related to the concurrent use of a HMD and an EEG-based BCI are also discussed.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The Impact of Passive Head-Mounted Virtual Reality Devices on the Quality of EEG Signals\",\"authors\":\"G. Cattan, Anton Andreev, César Mendoza, M. Congedo\",\"doi\":\"10.2312/vriphys.20181064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to the low price, the use of a head-mounted device (HMD) equipped with a smartphone is currently a common setup for virtual reality (VR). Brain-computer interface (BCI) based on electroencephalography (EEG) is a promising technology to enrich the VR experience. However, the effect of using HMDs on the acquisition of EEG signals remains still unknown. In fact, the smartphone is placed close to the head where EEG sensors are located, thus the smartphone's electronics may perturb the acquisition of the EEG signal. In the present study, we compare the spectral properties of the EEG signal acquired on 12 subjects wearing a SamsungGear HMD equipped with a Samsung S6 smartphone turned on and off. Our study shows that there is no significant difference in the spectral properties of the EEG in these two experimental conditions. We conclude that a smartphone-based HMD is compatible with EEG technology. Some technical problems related to the concurrent use of a HMD and an EEG-based BCI are also discussed.\",\"PeriodicalId\":446363,\"journal\":{\"name\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/vriphys.20181064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Virtual Reality Interactions and Physical Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vriphys.20181064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Impact of Passive Head-Mounted Virtual Reality Devices on the Quality of EEG Signals
Thanks to the low price, the use of a head-mounted device (HMD) equipped with a smartphone is currently a common setup for virtual reality (VR). Brain-computer interface (BCI) based on electroencephalography (EEG) is a promising technology to enrich the VR experience. However, the effect of using HMDs on the acquisition of EEG signals remains still unknown. In fact, the smartphone is placed close to the head where EEG sensors are located, thus the smartphone's electronics may perturb the acquisition of the EEG signal. In the present study, we compare the spectral properties of the EEG signal acquired on 12 subjects wearing a SamsungGear HMD equipped with a Samsung S6 smartphone turned on and off. Our study shows that there is no significant difference in the spectral properties of the EEG in these two experimental conditions. We conclude that a smartphone-based HMD is compatible with EEG technology. Some technical problems related to the concurrent use of a HMD and an EEG-based BCI are also discussed.