基于渐进式ii型滤波的ii型极值分布估计

K. Ahmadi, V. A. Khalaf, M. Rezaei
{"title":"基于渐进式ii型滤波的ii型极值分布估计","authors":"K. Ahmadi, V. A. Khalaf, M. Rezaei","doi":"10.18869/ACADPUB.JSRI.9.2.195","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII ) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes estimates using both the symmetric and asymmetric loss functions via squared error loss, LINEX loss, and general entropy loss functions. Bayes estimates are obtained using the idea of Lindley and Markov chain Monte Carlo techniques. Finally, Monte Carlo simulations are presented to illustrate the methods discussed in this paper. Analysis is also carried out for a real data set.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring\",\"authors\":\"K. Ahmadi, V. A. Khalaf, M. Rezaei\",\"doi\":\"10.18869/ACADPUB.JSRI.9.2.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII ) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes estimates using both the symmetric and asymmetric loss functions via squared error loss, LINEX loss, and general entropy loss functions. Bayes estimates are obtained using the idea of Lindley and Markov chain Monte Carlo techniques. Finally, Monte Carlo simulations are presented to illustrate the methods discussed in this paper. Analysis is also carried out for a real data set.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18869/ACADPUB.JSRI.9.2.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.JSRI.9.2.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了观测数据逐次被ii型截除时,ii型极值(evi)分布的未知参数和可靠性函数的统计推断。通过应用EM算法,我们得到了极大似然估计。我们还提出了近似最大似然估计(AMLEs),它具有显式表达式。我们通过平方误差损失、LINEX损失和一般熵损失函数提供对称和非对称损失函数的贝叶斯估计。贝叶斯估计是利用林德利和马尔可夫链蒙特卡罗技术的思想得到的。最后,用蒙特卡罗模拟来说明本文所讨论的方法。并对实际数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring
In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII ) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes estimates using both the symmetric and asymmetric loss functions via squared error loss, LINEX loss, and general entropy loss functions. Bayes estimates are obtained using the idea of Lindley and Markov chain Monte Carlo techniques. Finally, Monte Carlo simulations are presented to illustrate the methods discussed in this paper. Analysis is also carried out for a real data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信