隐私保护的三种新方法及其应用

Youwen Zhu, Liusheng Huang, Wei Yang, Dong Li, Yonglong Luo, Fan Dong
{"title":"隐私保护的三种新方法及其应用","authors":"Youwen Zhu, Liusheng Huang, Wei Yang, Dong Li, Yonglong Luo, Fan Dong","doi":"10.1109/WKDD.2009.34","DOIUrl":null,"url":null,"abstract":"Privacy-preserving Data Mining aims at securely extracting knowledge from two or more parties' private data. Secure Multi-party Computation is the paramount approach to it. In this paper, we study Privacy-preserving Add and Multiply Exchanging Technology and present three new different approaches to Privacy-preserving Add to Multiply Protocol. After that, we analyze and compare the three different approaches about the communication overheads, the computation efforts and the security. In addition, we extend Privacy-preserving Add to Multiply Protocol to Privacy-preserving Adding to Scalar Product Protocol, which is more secure and more useful in the high security situations of Privacy-preserving Data Mining. Meantime, we present a solution for the new protocol.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Three New Approaches to Privacy-preserving Add to Multiply Protocol and its Application\",\"authors\":\"Youwen Zhu, Liusheng Huang, Wei Yang, Dong Li, Yonglong Luo, Fan Dong\",\"doi\":\"10.1109/WKDD.2009.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy-preserving Data Mining aims at securely extracting knowledge from two or more parties' private data. Secure Multi-party Computation is the paramount approach to it. In this paper, we study Privacy-preserving Add and Multiply Exchanging Technology and present three new different approaches to Privacy-preserving Add to Multiply Protocol. After that, we analyze and compare the three different approaches about the communication overheads, the computation efforts and the security. In addition, we extend Privacy-preserving Add to Multiply Protocol to Privacy-preserving Adding to Scalar Product Protocol, which is more secure and more useful in the high security situations of Privacy-preserving Data Mining. Meantime, we present a solution for the new protocol.\",\"PeriodicalId\":143250,\"journal\":{\"name\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2009.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

保护隐私的数据挖掘旨在从双方或多方的私有数据中安全地提取知识。安全多方计算是最重要的方法。本文研究了保护隐私的加乘交换技术,提出了三种不同的保护隐私的加乘协议的新方法。然后,从通信开销、计算量和安全性三个方面对三种不同的方法进行了分析和比较。此外,我们将隐私保护乘法相加协议扩展为隐私保护标量乘积相加协议,该协议在隐私保护数据挖掘的高安全情况下更安全、更有用。同时,对新协议提出了一种解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three New Approaches to Privacy-preserving Add to Multiply Protocol and its Application
Privacy-preserving Data Mining aims at securely extracting knowledge from two or more parties' private data. Secure Multi-party Computation is the paramount approach to it. In this paper, we study Privacy-preserving Add and Multiply Exchanging Technology and present three new different approaches to Privacy-preserving Add to Multiply Protocol. After that, we analyze and compare the three different approaches about the communication overheads, the computation efforts and the security. In addition, we extend Privacy-preserving Add to Multiply Protocol to Privacy-preserving Adding to Scalar Product Protocol, which is more secure and more useful in the high security situations of Privacy-preserving Data Mining. Meantime, we present a solution for the new protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信