分量支持向量机的最大变异和缺失值

K. Pelckmans, J. Suykens, B. Moor, J. Brabanter
{"title":"分量支持向量机的最大变异和缺失值","authors":"K. Pelckmans, J. Suykens, B. Moor, J. Brabanter","doi":"10.1109/IJCNN.2005.1556371","DOIUrl":null,"url":null,"abstract":"This paper proposes primal-dual kernel machine classifiers based on worst-case analysis of a finite set of observations including missing values of the inputs. Key ingredients are the use of a componentwise support vector machine (cSVM) and an empirical measure of maximal variation of the components to bind the influence of the component which cannot be evaluated due to missing values. A regularization term based on the L/sub 1/ norm of the maximal variation is used to obtain a mechanism for structure detection in that context. An efficient implementation using the hierarchical kernel machines framework is elaborated.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Maximal variation and missing values for componentwise support vector machines\",\"authors\":\"K. Pelckmans, J. Suykens, B. Moor, J. Brabanter\",\"doi\":\"10.1109/IJCNN.2005.1556371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes primal-dual kernel machine classifiers based on worst-case analysis of a finite set of observations including missing values of the inputs. Key ingredients are the use of a componentwise support vector machine (cSVM) and an empirical measure of maximal variation of the components to bind the influence of the component which cannot be evaluated due to missing values. A regularization term based on the L/sub 1/ norm of the maximal variation is used to obtain a mechanism for structure detection in that context. An efficient implementation using the hierarchical kernel machines framework is elaborated.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于最坏情况分析的原始-对偶核机器分类器。关键成分是使用组件支持向量机(cSVM)和组件最大变化的经验度量来绑定由于缺失值而无法评估的组件的影响。利用基于最大变异的L/sub 1/范数的正则化项,获得了该情况下的结构检测机制。阐述了一种使用分层内核机框架的高效实现方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal variation and missing values for componentwise support vector machines
This paper proposes primal-dual kernel machine classifiers based on worst-case analysis of a finite set of observations including missing values of the inputs. Key ingredients are the use of a componentwise support vector machine (cSVM) and an empirical measure of maximal variation of the components to bind the influence of the component which cannot be evaluated due to missing values. A regularization term based on the L/sub 1/ norm of the maximal variation is used to obtain a mechanism for structure detection in that context. An efficient implementation using the hierarchical kernel machines framework is elaborated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信