利用低成本磁强计和加速度计设计了一种基于四元数的特殊动态初始方位估计系统

Chang Liu, Jie Li, Kewei Huang, Fei Liu
{"title":"利用低成本磁强计和加速度计设计了一种基于四元数的特殊动态初始方位估计系统","authors":"Chang Liu, Jie Li, Kewei Huang, Fei Liu","doi":"10.1109/PLANS.2012.6236935","DOIUrl":null,"url":null,"abstract":"This work presents a new method for estimating the initial orientation of one micro air vehicle (MAV) whose navigation system is powered in a dynamic condition, using low cost three-axis magnetometer and three-axis accelerometer. Although the earth's magnetic field offers a steady reference vector to determine the attitude, only one vector is insufficient to get accurate values. To solve this problem, the variation of the MAV's acceleration is added to the reference vector. And our focus is on how to combine the direction of magnetic field and acceleration into an entirety effectively, and use this method in a special dynamic state, parachuting. The challenge is that the whole estimation process must be accomplished in dynamic state and there is no external calibration information. Thus, advanced Gauss-Newton is adopted to improve the efficiency, and a model of parachuting is built to describe the variation of acceleration. The results of simple simulation on computer and experiment show that the method has a good performance in a simple surrounding.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A quaternion-based initial orientation estimation system suitable for one special dynamic state Using low cost magnetometer and accelerometer\",\"authors\":\"Chang Liu, Jie Li, Kewei Huang, Fei Liu\",\"doi\":\"10.1109/PLANS.2012.6236935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new method for estimating the initial orientation of one micro air vehicle (MAV) whose navigation system is powered in a dynamic condition, using low cost three-axis magnetometer and three-axis accelerometer. Although the earth's magnetic field offers a steady reference vector to determine the attitude, only one vector is insufficient to get accurate values. To solve this problem, the variation of the MAV's acceleration is added to the reference vector. And our focus is on how to combine the direction of magnetic field and acceleration into an entirety effectively, and use this method in a special dynamic state, parachuting. The challenge is that the whole estimation process must be accomplished in dynamic state and there is no external calibration information. Thus, advanced Gauss-Newton is adopted to improve the efficiency, and a model of parachuting is built to describe the variation of acceleration. The results of simple simulation on computer and experiment show that the method has a good performance in a simple surrounding.\",\"PeriodicalId\":282304,\"journal\":{\"name\":\"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2012.6236935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2012.6236935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于低成本三轴磁强计和三轴加速度计的动态导航微飞行器初始方位估计新方法。虽然地球磁场为确定姿态提供了稳定的参考矢量,但只有一个矢量不足以得到精确的数值。为了解决这一问题,在参考向量中加入了MAV加速度的变化。我们的重点是如何将磁场方向和加速度有效地结合为一个整体,并在特殊的动态状态下使用这种方法,即跳伞。挑战在于整个估计过程必须在动态状态下完成,并且没有外部校准信息。为此,采用了改进的高斯-牛顿法来提高效率,并建立了一个描述跳伞加速度变化的模型。简单的计算机仿真和实验结果表明,该方法在简单环境下具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quaternion-based initial orientation estimation system suitable for one special dynamic state Using low cost magnetometer and accelerometer
This work presents a new method for estimating the initial orientation of one micro air vehicle (MAV) whose navigation system is powered in a dynamic condition, using low cost three-axis magnetometer and three-axis accelerometer. Although the earth's magnetic field offers a steady reference vector to determine the attitude, only one vector is insufficient to get accurate values. To solve this problem, the variation of the MAV's acceleration is added to the reference vector. And our focus is on how to combine the direction of magnetic field and acceleration into an entirety effectively, and use this method in a special dynamic state, parachuting. The challenge is that the whole estimation process must be accomplished in dynamic state and there is no external calibration information. Thus, advanced Gauss-Newton is adopted to improve the efficiency, and a model of parachuting is built to describe the variation of acceleration. The results of simple simulation on computer and experiment show that the method has a good performance in a simple surrounding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信