E. M. Garcia, C. Chang, Hongrae Park, M. Bernitsas
{"title":"涡激振动中阻尼对圆柱变附加质量和升力的影响","authors":"E. M. Garcia, C. Chang, Hongrae Park, M. Bernitsas","doi":"10.1109/OCEANS.2014.7003253","DOIUrl":null,"url":null,"abstract":"For many decades now, the idea of Vortex-Induced Vibrations (VIV) being modeled as a lock-in phenomenon of a mass-spring-dashpot system with an ideal added mass term has prevailed. In 2000, it was suggested by Vikestad et al. [1] that VIV may be modeled as a resonance phenomenon with variable natural frequency due to a variable added-mass term. In this paper, the variable added-mass approach is used for analysis of VIV at various added damping values. Additionally, Vandiver's damping coefficient c* is used [2] to correlate damping to lift. The findings are that: 1. The oscillation frequency is in unity with the mean of the natural frequency with variable added mass for each period of oscillation during VIV lock-in no matter the damping value. 2. The time-averaged variable added mass coefficient is shown to vary with an increasing damping coefficient, where below a reduced velocity of approximately seven, increased damping indicates increased added mass. After a reduced velocity of approximately seven, however, increased damping results in decreased added mass. 3. Vandiver's damping coefficient c* plotted against the nondimensional amplitude follows very closely to c*A/D = max lift coefficient = square root of 0.79 [3]. A handful of cases did exceed square root of 0.79 but only marginally.","PeriodicalId":368693,"journal":{"name":"2014 Oceans - St. John's","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Effect of damping on variable added mass and lift of circular cylinders in vortex-induced vibrations\",\"authors\":\"E. M. Garcia, C. Chang, Hongrae Park, M. Bernitsas\",\"doi\":\"10.1109/OCEANS.2014.7003253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many decades now, the idea of Vortex-Induced Vibrations (VIV) being modeled as a lock-in phenomenon of a mass-spring-dashpot system with an ideal added mass term has prevailed. In 2000, it was suggested by Vikestad et al. [1] that VIV may be modeled as a resonance phenomenon with variable natural frequency due to a variable added-mass term. In this paper, the variable added-mass approach is used for analysis of VIV at various added damping values. Additionally, Vandiver's damping coefficient c* is used [2] to correlate damping to lift. The findings are that: 1. The oscillation frequency is in unity with the mean of the natural frequency with variable added mass for each period of oscillation during VIV lock-in no matter the damping value. 2. The time-averaged variable added mass coefficient is shown to vary with an increasing damping coefficient, where below a reduced velocity of approximately seven, increased damping indicates increased added mass. After a reduced velocity of approximately seven, however, increased damping results in decreased added mass. 3. Vandiver's damping coefficient c* plotted against the nondimensional amplitude follows very closely to c*A/D = max lift coefficient = square root of 0.79 [3]. A handful of cases did exceed square root of 0.79 but only marginally.\",\"PeriodicalId\":368693,\"journal\":{\"name\":\"2014 Oceans - St. John's\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Oceans - St. John's\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2014.7003253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Oceans - St. John's","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2014.7003253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of damping on variable added mass and lift of circular cylinders in vortex-induced vibrations
For many decades now, the idea of Vortex-Induced Vibrations (VIV) being modeled as a lock-in phenomenon of a mass-spring-dashpot system with an ideal added mass term has prevailed. In 2000, it was suggested by Vikestad et al. [1] that VIV may be modeled as a resonance phenomenon with variable natural frequency due to a variable added-mass term. In this paper, the variable added-mass approach is used for analysis of VIV at various added damping values. Additionally, Vandiver's damping coefficient c* is used [2] to correlate damping to lift. The findings are that: 1. The oscillation frequency is in unity with the mean of the natural frequency with variable added mass for each period of oscillation during VIV lock-in no matter the damping value. 2. The time-averaged variable added mass coefficient is shown to vary with an increasing damping coefficient, where below a reduced velocity of approximately seven, increased damping indicates increased added mass. After a reduced velocity of approximately seven, however, increased damping results in decreased added mass. 3. Vandiver's damping coefficient c* plotted against the nondimensional amplitude follows very closely to c*A/D = max lift coefficient = square root of 0.79 [3]. A handful of cases did exceed square root of 0.79 but only marginally.