多值函数的克罗内克伽罗瓦场决策图电路设计

R. Stankovic, R. Drechsler
{"title":"多值函数的克罗内克伽罗瓦场决策图电路设计","authors":"R. Stankovic, R. Drechsler","doi":"10.1109/ISMVL.1997.601413","DOIUrl":null,"url":null,"abstract":"In this paper we define the Kronecker Galois field decision diagrams (KGFDDs), a generalization of Kronecker decision diagrams (KDDs) to the representation of multiple-valued (MV) functions. Starting from the multi-place decision diagrams (MDDs) and Galois field decision diagrams (GFDDs) we give a generalization that allows more compact representation with respect to the nodes needed. Based on KGFDDs we present a new method for circuit design for MV circuits. In contrast to previously presented approaches the resulting circuits have only logarithmic (instead of linear) depth.","PeriodicalId":206024,"journal":{"name":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Circuit design from Kronecker Galois field decision diagrams for multiple-valued functions\",\"authors\":\"R. Stankovic, R. Drechsler\",\"doi\":\"10.1109/ISMVL.1997.601413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we define the Kronecker Galois field decision diagrams (KGFDDs), a generalization of Kronecker decision diagrams (KDDs) to the representation of multiple-valued (MV) functions. Starting from the multi-place decision diagrams (MDDs) and Galois field decision diagrams (GFDDs) we give a generalization that allows more compact representation with respect to the nodes needed. Based on KGFDDs we present a new method for circuit design for MV circuits. In contrast to previously presented approaches the resulting circuits have only logarithmic (instead of linear) depth.\",\"PeriodicalId\":206024,\"journal\":{\"name\":\"Proceedings 1997 27th International Symposium on Multiple- Valued Logic\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1997 27th International Symposium on Multiple- Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1997.601413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1997.601413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文定义了Kronecker - Galois域决策图,将Kronecker决策图推广到多值(MV)函数的表示。从多位置决策图(mdd)和伽罗瓦域决策图(gfdd)开始,我们给出了一种一般化的方法,允许对所需节点进行更紧凑的表示。本文提出了一种基于kgfdd的中压电路设计新方法。与先前提出的方法相反,所得到的电路只有对数(而不是线性)深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circuit design from Kronecker Galois field decision diagrams for multiple-valued functions
In this paper we define the Kronecker Galois field decision diagrams (KGFDDs), a generalization of Kronecker decision diagrams (KDDs) to the representation of multiple-valued (MV) functions. Starting from the multi-place decision diagrams (MDDs) and Galois field decision diagrams (GFDDs) we give a generalization that allows more compact representation with respect to the nodes needed. Based on KGFDDs we present a new method for circuit design for MV circuits. In contrast to previously presented approaches the resulting circuits have only logarithmic (instead of linear) depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信