在精度约束下确定目标跟踪所需视频数据帧率

A. Mohan, Ahmed S. Kaseb, Kent W. Gauen, Yung-Hsiang Lu, A. Reibman, T. Hacker
{"title":"在精度约束下确定目标跟踪所需视频数据帧率","authors":"A. Mohan, Ahmed S. Kaseb, Kent W. Gauen, Yung-Hsiang Lu, A. Reibman, T. Hacker","doi":"10.1109/MIPR.2018.00081","DOIUrl":null,"url":null,"abstract":"Network cameras, a type of surveillance cameras, generate real-time, versatile, and high quality video content that can be used for applications such as public safety and surveillance. Analyzing high frame rate video streams im- poses heavy computing needs and significant loads to the network. High frame rates may not be essential for meeting the accuracy requirements of the analyses. For example, high frame rates may not be required to track cars inside a garage compared with cars on a highway. In this paper, we study object tracking and propose a method to automatically determine the necessary frame rate for videos in network cameras for object tracking and adapt to run- time conditions. We demonstrate that the frame rates can be reduced up to 80% based on accuracy constraints.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Determining the Necessary Frame Rate of Video Data for Object Tracking under Accuracy Constraints\",\"authors\":\"A. Mohan, Ahmed S. Kaseb, Kent W. Gauen, Yung-Hsiang Lu, A. Reibman, T. Hacker\",\"doi\":\"10.1109/MIPR.2018.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network cameras, a type of surveillance cameras, generate real-time, versatile, and high quality video content that can be used for applications such as public safety and surveillance. Analyzing high frame rate video streams im- poses heavy computing needs and significant loads to the network. High frame rates may not be essential for meeting the accuracy requirements of the analyses. For example, high frame rates may not be required to track cars inside a garage compared with cars on a highway. In this paper, we study object tracking and propose a method to automatically determine the necessary frame rate for videos in network cameras for object tracking and adapt to run- time conditions. We demonstrate that the frame rates can be reduced up to 80% based on accuracy constraints.\",\"PeriodicalId\":320000,\"journal\":{\"name\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR.2018.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

网络摄像机是监控摄像机的一种,可生成实时、多用途、高质量的视频内容,可用于公共安全和监控等应用。分析高帧率视频流需要大量的计算量,给网络带来巨大的负载。高帧率可能不是满足分析精度要求的必要条件。例如,与高速公路上的汽车相比,跟踪车库中的汽车可能不需要高帧率。本文对目标跟踪进行了研究,提出了一种自动确定网络摄像机视频中目标跟踪所需帧率并适应运行时条件的方法。我们证明了基于精度约束的帧率可以降低80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining the Necessary Frame Rate of Video Data for Object Tracking under Accuracy Constraints
Network cameras, a type of surveillance cameras, generate real-time, versatile, and high quality video content that can be used for applications such as public safety and surveillance. Analyzing high frame rate video streams im- poses heavy computing needs and significant loads to the network. High frame rates may not be essential for meeting the accuracy requirements of the analyses. For example, high frame rates may not be required to track cars inside a garage compared with cars on a highway. In this paper, we study object tracking and propose a method to automatically determine the necessary frame rate for videos in network cameras for object tracking and adapt to run- time conditions. We demonstrate that the frame rates can be reduced up to 80% based on accuracy constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信