Adriano Soares Koshiyama, Nikan B. Firoozye, P. Treleaven
{"title":"衍生品交易推荐系统:中曲线日历点差案例","authors":"Adriano Soares Koshiyama, Nikan B. Firoozye, P. Treleaven","doi":"10.2139/ssrn.3269496","DOIUrl":null,"url":null,"abstract":"Derivative traders are usually required to scan through hundreds, even thousands of possible trades on a daily basis. Up to now, not a single solution is available to aid in their job. Hence, this work aims to develop a trading recommendation system, and apply this system to the so-called Mid-Curve Calendar Spread (MCCS). To suggest that such approach is feasible, we used a list of 35 different types of MCCS; a total of 11 predictive models; and 4 benchmark models. Our results suggest that linear regression with lasso regularisation compared favourably to other approaches from a predictive and interpretability perspective.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Derivatives Trading Recommendation System: the Mid-Curve Calendar Spread Case\",\"authors\":\"Adriano Soares Koshiyama, Nikan B. Firoozye, P. Treleaven\",\"doi\":\"10.2139/ssrn.3269496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Derivative traders are usually required to scan through hundreds, even thousands of possible trades on a daily basis. Up to now, not a single solution is available to aid in their job. Hence, this work aims to develop a trading recommendation system, and apply this system to the so-called Mid-Curve Calendar Spread (MCCS). To suggest that such approach is feasible, we used a list of 35 different types of MCCS; a total of 11 predictive models; and 4 benchmark models. Our results suggest that linear regression with lasso regularisation compared favourably to other approaches from a predictive and interpretability perspective.\",\"PeriodicalId\":406435,\"journal\":{\"name\":\"CompSciRN: Other Machine Learning (Topic)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Other Machine Learning (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3269496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3269496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Derivatives Trading Recommendation System: the Mid-Curve Calendar Spread Case
Derivative traders are usually required to scan through hundreds, even thousands of possible trades on a daily basis. Up to now, not a single solution is available to aid in their job. Hence, this work aims to develop a trading recommendation system, and apply this system to the so-called Mid-Curve Calendar Spread (MCCS). To suggest that such approach is feasible, we used a list of 35 different types of MCCS; a total of 11 predictive models; and 4 benchmark models. Our results suggest that linear regression with lasso regularisation compared favourably to other approaches from a predictive and interpretability perspective.