基于空间变自然场景统计的注视点视频质量评估模型

Y. Jin, T. Goodall, Anjul Patney, R. Webb, A. Bovik
{"title":"基于空间变自然场景统计的注视点视频质量评估模型","authors":"Y. Jin, T. Goodall, Anjul Patney, R. Webb, A. Bovik","doi":"10.1109/ICIP42928.2021.9506032","DOIUrl":null,"url":null,"abstract":"In Virtual Reality (VR) systems, head mounted displays (HMDs) are widely used to present VR contents. When displaying immersive (360° video) scenes, greater challenges arise due to limitations of computing power, frame rate, and transmission bandwidth. To address these problems, a variety of foveated video compression and streaming methods have been proposed, which seek to exploit the nonuniform sampling density of the retinal photoreceptors and ganglion cells, which decreases rapidly with increasing eccentricity. Creating foveated immersive video content leads to the need for specialized foveated video quality pridictors. Here we propose a No-Reference (NR or blind) method which we call “Space-Variant BRISQUE (SV-BRISQUE),” which is based on a new space-variant natural scene statistics model. When tested on a large database of foveated, compression-distorted videos along with human opinions of them, we found that our new model algorithm achieves state of the art (SOTA) performance with correlation 0.88 / 0.90 (PLCC / SROCC) against human subjectivity.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Foveated Video Quality Assessment Model Using Space-Variant Natural Scene Statistics\",\"authors\":\"Y. Jin, T. Goodall, Anjul Patney, R. Webb, A. Bovik\",\"doi\":\"10.1109/ICIP42928.2021.9506032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Virtual Reality (VR) systems, head mounted displays (HMDs) are widely used to present VR contents. When displaying immersive (360° video) scenes, greater challenges arise due to limitations of computing power, frame rate, and transmission bandwidth. To address these problems, a variety of foveated video compression and streaming methods have been proposed, which seek to exploit the nonuniform sampling density of the retinal photoreceptors and ganglion cells, which decreases rapidly with increasing eccentricity. Creating foveated immersive video content leads to the need for specialized foveated video quality pridictors. Here we propose a No-Reference (NR or blind) method which we call “Space-Variant BRISQUE (SV-BRISQUE),” which is based on a new space-variant natural scene statistics model. When tested on a large database of foveated, compression-distorted videos along with human opinions of them, we found that our new model algorithm achieves state of the art (SOTA) performance with correlation 0.88 / 0.90 (PLCC / SROCC) against human subjectivity.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在虚拟现实(VR)系统中,头戴式显示器(hmd)被广泛用于呈现VR内容。在显示沉浸式(360°视频)场景时,由于计算能力、帧速率和传输带宽的限制,会带来更大的挑战。为了解决这些问题,人们提出了各种注视点视频压缩和流式传输方法,这些方法寻求利用视网膜光感受器和神经节细胞的非均匀采样密度,这种采样密度随着偏心率的增加而迅速降低。创建焦点式沉浸式视频内容需要专门的焦点式视频质量预测器。在此,我们提出了一种基于新的空间变自然场景统计模型的无参考(NR或blind)方法,我们称之为“空间变BRISQUE (SV-BRISQUE)”。当在一个大型数据库中对焦点、压缩失真的视频以及人类对这些视频的看法进行测试时,我们发现我们的新模型算法达到了最先进的SOTA性能,与人类主观性的相关性为0.88 / 0.90 (PLCC / SROCC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Foveated Video Quality Assessment Model Using Space-Variant Natural Scene Statistics
In Virtual Reality (VR) systems, head mounted displays (HMDs) are widely used to present VR contents. When displaying immersive (360° video) scenes, greater challenges arise due to limitations of computing power, frame rate, and transmission bandwidth. To address these problems, a variety of foveated video compression and streaming methods have been proposed, which seek to exploit the nonuniform sampling density of the retinal photoreceptors and ganglion cells, which decreases rapidly with increasing eccentricity. Creating foveated immersive video content leads to the need for specialized foveated video quality pridictors. Here we propose a No-Reference (NR or blind) method which we call “Space-Variant BRISQUE (SV-BRISQUE),” which is based on a new space-variant natural scene statistics model. When tested on a large database of foveated, compression-distorted videos along with human opinions of them, we found that our new model algorithm achieves state of the art (SOTA) performance with correlation 0.88 / 0.90 (PLCC / SROCC) against human subjectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信