K. Kubo, Xiaoyu Zheng, Yoichi Tanaka, H. Tamaki, T. Sugiyama, Sunghyon Jang, T. Takata, A. Yamaguchi
{"title":"基于THALES2-RAPID的洪水引发事故情景的动态PRA","authors":"K. Kubo, Xiaoyu Zheng, Yoichi Tanaka, H. Tamaki, T. Sugiyama, Sunghyon Jang, T. Takata, A. Yamaguchi","doi":"10.3850/978-981-14-8593-0_4717-CD","DOIUrl":null,"url":null,"abstract":"Probabilistic risk assessment (PRA) is one of the methods used to assess the risks associated with large and complex systems. When the risk of an external event is evaluated using conventional PRA, a particular limitation is the difficulty in considering the timing at which nuclear power plant structures, systems, and components fail. To overcome this limitation, we coupled thermal-hydraulic and external-event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID). Internal flooding was chosen as the representative external event, and a pressurized water reactor plant model was used. Equations based on Bernoulli’s theorem were applied to flooding propagation in the turbine building. In the analysis, uncertainties were taken into account, including the flow rate of the flood water source and the failure criteria for the mitigation systems. In terms of recovery action, isolation of the flood water source by the operator and drainage using a pump were modeled based on several assumptions. The results indicate that the isolation action became more effective when combined with drainage.","PeriodicalId":201963,"journal":{"name":"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic PRA of Flooding-Initiated Accident Scenarios using THALES2-RAPID\",\"authors\":\"K. Kubo, Xiaoyu Zheng, Yoichi Tanaka, H. Tamaki, T. Sugiyama, Sunghyon Jang, T. Takata, A. Yamaguchi\",\"doi\":\"10.3850/978-981-14-8593-0_4717-CD\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic risk assessment (PRA) is one of the methods used to assess the risks associated with large and complex systems. When the risk of an external event is evaluated using conventional PRA, a particular limitation is the difficulty in considering the timing at which nuclear power plant structures, systems, and components fail. To overcome this limitation, we coupled thermal-hydraulic and external-event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID). Internal flooding was chosen as the representative external event, and a pressurized water reactor plant model was used. Equations based on Bernoulli’s theorem were applied to flooding propagation in the turbine building. In the analysis, uncertainties were taken into account, including the flow rate of the flood water source and the failure criteria for the mitigation systems. In terms of recovery action, isolation of the flood water source by the operator and drainage using a pump were modeled based on several assumptions. The results indicate that the isolation action became more effective when combined with drainage.\",\"PeriodicalId\":201963,\"journal\":{\"name\":\"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3850/978-981-14-8593-0_4717-CD\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/978-981-14-8593-0_4717-CD","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic PRA of Flooding-Initiated Accident Scenarios using THALES2-RAPID
Probabilistic risk assessment (PRA) is one of the methods used to assess the risks associated with large and complex systems. When the risk of an external event is evaluated using conventional PRA, a particular limitation is the difficulty in considering the timing at which nuclear power plant structures, systems, and components fail. To overcome this limitation, we coupled thermal-hydraulic and external-event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID). Internal flooding was chosen as the representative external event, and a pressurized water reactor plant model was used. Equations based on Bernoulli’s theorem were applied to flooding propagation in the turbine building. In the analysis, uncertainties were taken into account, including the flow rate of the flood water source and the failure criteria for the mitigation systems. In terms of recovery action, isolation of the flood water source by the operator and drainage using a pump were modeled based on several assumptions. The results indicate that the isolation action became more effective when combined with drainage.