{"title":"一种可植入的0.18µm CMOS连续血糖监测微系统","authors":"M. H. Nazari, M. Mujeeb-U.-Rahman, A. Scherer","doi":"10.1109/VLSIC.2014.6858432","DOIUrl":null,"url":null,"abstract":"We present a fully implantable subcutaneous continuous glucose monitoring (CGM) microsystem on CMOS platform. The proposed design incorporates electrochemical sensing technique using an ultra-low-power potentiostatic system. It is wirelessly powered through an inductive coupling link at 900MHz and supports bidirectional data communication with an external reader. A low-power potentiostat and a dual-slope ADC record the on-chip sensor signal. Pt and Ag/AgCl on-chip electrodes are post-fabricated and functionalized in situ by glucose oxidase enzyme to enable glucose measurement. The 1.4×1.4×0.25mm3 prototype fabricated in a 0.18μm CMOS technology was validated in glucose measurements. Total power consumption of the system is 6μW.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"An implantable continuous glucose monitoring microsystem in 0.18µm CMOS\",\"authors\":\"M. H. Nazari, M. Mujeeb-U.-Rahman, A. Scherer\",\"doi\":\"10.1109/VLSIC.2014.6858432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fully implantable subcutaneous continuous glucose monitoring (CGM) microsystem on CMOS platform. The proposed design incorporates electrochemical sensing technique using an ultra-low-power potentiostatic system. It is wirelessly powered through an inductive coupling link at 900MHz and supports bidirectional data communication with an external reader. A low-power potentiostat and a dual-slope ADC record the on-chip sensor signal. Pt and Ag/AgCl on-chip electrodes are post-fabricated and functionalized in situ by glucose oxidase enzyme to enable glucose measurement. The 1.4×1.4×0.25mm3 prototype fabricated in a 0.18μm CMOS technology was validated in glucose measurements. Total power consumption of the system is 6μW.\",\"PeriodicalId\":381216,\"journal\":{\"name\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2014.6858432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An implantable continuous glucose monitoring microsystem in 0.18µm CMOS
We present a fully implantable subcutaneous continuous glucose monitoring (CGM) microsystem on CMOS platform. The proposed design incorporates electrochemical sensing technique using an ultra-low-power potentiostatic system. It is wirelessly powered through an inductive coupling link at 900MHz and supports bidirectional data communication with an external reader. A low-power potentiostat and a dual-slope ADC record the on-chip sensor signal. Pt and Ag/AgCl on-chip electrodes are post-fabricated and functionalized in situ by glucose oxidase enzyme to enable glucose measurement. The 1.4×1.4×0.25mm3 prototype fabricated in a 0.18μm CMOS technology was validated in glucose measurements. Total power consumption of the system is 6μW.