基于改进遗传算法的无线网络移动边缘计算任务卸载

Web Intell. Pub Date : 2022-08-16 DOI:10.3233/web-220019
Zhanlei Shang, Chenxu Zhao
{"title":"基于改进遗传算法的无线网络移动边缘计算任务卸载","authors":"Zhanlei Shang, Chenxu Zhao","doi":"10.3233/web-220019","DOIUrl":null,"url":null,"abstract":"In order to overcome the problems of high unloading time cost, long unloading task delay and poor load balance of traditional offloading methods, this paper studies the mobile edge computing task offloading method of wireless network based on improved genetic algorithm. Based on the wireless network mobile edge computing architecture, a wireless network mobile edge computing task scheduling scheme is constructed to lay the foundation for subsequent task offloading. Then, the improved genetic algorithm is used for initial operation allocation and offloading priority ranking, and the mobile edge computing task offloading is realized by dynamically adjusting the trade-off coefficient. The experimental results show that the offloading time cost of this method is between 0.16 min–0.31 min, the offloading task delay is between 1.05 s–1.47 s, and the load balance can reach 97.9%, indicating that it effectively realizes the design expectation.","PeriodicalId":245783,"journal":{"name":"Web Intell.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mobile edge computing task offloading in wireless networks based on improved genetic algorithm\",\"authors\":\"Zhanlei Shang, Chenxu Zhao\",\"doi\":\"10.3233/web-220019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to overcome the problems of high unloading time cost, long unloading task delay and poor load balance of traditional offloading methods, this paper studies the mobile edge computing task offloading method of wireless network based on improved genetic algorithm. Based on the wireless network mobile edge computing architecture, a wireless network mobile edge computing task scheduling scheme is constructed to lay the foundation for subsequent task offloading. Then, the improved genetic algorithm is used for initial operation allocation and offloading priority ranking, and the mobile edge computing task offloading is realized by dynamically adjusting the trade-off coefficient. The experimental results show that the offloading time cost of this method is between 0.16 min–0.31 min, the offloading task delay is between 1.05 s–1.47 s, and the load balance can reach 97.9%, indicating that it effectively realizes the design expectation.\",\"PeriodicalId\":245783,\"journal\":{\"name\":\"Web Intell.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-220019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-220019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了克服传统卸载方法存在的卸载时间成本高、卸载任务延迟长、负载均衡性差等问题,本文研究了基于改进遗传算法的无线网络移动边缘计算任务卸载方法。基于无线网络移动边缘计算架构,构建了无线网络移动边缘计算任务调度方案,为后续的任务卸载奠定基础。然后,采用改进的遗传算法进行初始操作分配和卸载优先级排序,通过动态调整权衡系数实现移动边缘计算任务的卸载;实验结果表明,该方法的卸载时间成本在0.16 min ~ 0.31 min之间,卸载任务延迟在1.05 s ~ 1.47 s之间,负载均衡性可达97.9%,有效实现了设计预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mobile edge computing task offloading in wireless networks based on improved genetic algorithm
In order to overcome the problems of high unloading time cost, long unloading task delay and poor load balance of traditional offloading methods, this paper studies the mobile edge computing task offloading method of wireless network based on improved genetic algorithm. Based on the wireless network mobile edge computing architecture, a wireless network mobile edge computing task scheduling scheme is constructed to lay the foundation for subsequent task offloading. Then, the improved genetic algorithm is used for initial operation allocation and offloading priority ranking, and the mobile edge computing task offloading is realized by dynamically adjusting the trade-off coefficient. The experimental results show that the offloading time cost of this method is between 0.16 min–0.31 min, the offloading task delay is between 1.05 s–1.47 s, and the load balance can reach 97.9%, indicating that it effectively realizes the design expectation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信