电力系统机组投运问题的二进制蝙蝠搜索算法

Nidhi, Srikanth Reddy, R. Kumar, B. K. Panigrahi
{"title":"电力系统机组投运问题的二进制蝙蝠搜索算法","authors":"Nidhi, Srikanth Reddy, R. Kumar, B. K. Panigrahi","doi":"10.1109/WIECON-ECE.2017.8468909","DOIUrl":null,"url":null,"abstract":"The unit commitment operation in power systems is a complex, non-linear, constrained optimization problem. The commitment and de-commitment decision presents a binary problem which needs discrete/binary optimization approaches. This paper presents a binary bat search algorithm (BBSA) to solve unit commitment (UC) problem. The bat search algorithm belongs to a meta heuristic class of optimization approaches inspired by natural echolocation behavior of bats. In order to solve binary UC problem, the real valued bat search process is mapped to binary search space using sigmoidal transformation function. The BBSA is then applied to test system with 10 thermal units. The effectiveness of the BBSA is verified against system dimension using test systems upto 100 units. Extensive numerical experiments are performed to test the effectiveness of BBSA and statistical analysis of simulation results are presented. The simulation results are presented, discussed and compared to various existing classical and heuristic approaches. The same demonstrate the superior performance of BBSA approach in solving UC problem.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Binary Bat Search Algorithm for Unit Commitment Problem in Power system\",\"authors\":\"Nidhi, Srikanth Reddy, R. Kumar, B. K. Panigrahi\",\"doi\":\"10.1109/WIECON-ECE.2017.8468909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unit commitment operation in power systems is a complex, non-linear, constrained optimization problem. The commitment and de-commitment decision presents a binary problem which needs discrete/binary optimization approaches. This paper presents a binary bat search algorithm (BBSA) to solve unit commitment (UC) problem. The bat search algorithm belongs to a meta heuristic class of optimization approaches inspired by natural echolocation behavior of bats. In order to solve binary UC problem, the real valued bat search process is mapped to binary search space using sigmoidal transformation function. The BBSA is then applied to test system with 10 thermal units. The effectiveness of the BBSA is verified against system dimension using test systems upto 100 units. Extensive numerical experiments are performed to test the effectiveness of BBSA and statistical analysis of simulation results are presented. The simulation results are presented, discussed and compared to various existing classical and heuristic approaches. The same demonstrate the superior performance of BBSA approach in solving UC problem.\",\"PeriodicalId\":188031,\"journal\":{\"name\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIECON-ECE.2017.8468909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

电力系统机组投入运行是一个复杂的非线性约束优化问题。承诺和取消承诺决策是一个二元问题,需要采用离散/二元优化方法。提出了一种解决机组承诺问题的二进制蝙蝠搜索算法(BBSA)。蝙蝠搜索算法是一类受蝙蝠自然回声定位行为启发的元启发式优化方法。为了解决二进制UC问题,利用s型变换函数将实值蝙蝠搜索过程映射到二进制搜索空间。然后将BBSA应用于具有10个热单元的测试系统。使用多达100个单元的测试系统来验证BBSA的有效性。通过大量的数值实验验证了该方法的有效性,并对仿真结果进行了统计分析。给出了仿真结果,并与现有的各种经典方法和启发式方法进行了讨论和比较。同样证明了BBSA方法在解决UC问题上的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary Bat Search Algorithm for Unit Commitment Problem in Power system
The unit commitment operation in power systems is a complex, non-linear, constrained optimization problem. The commitment and de-commitment decision presents a binary problem which needs discrete/binary optimization approaches. This paper presents a binary bat search algorithm (BBSA) to solve unit commitment (UC) problem. The bat search algorithm belongs to a meta heuristic class of optimization approaches inspired by natural echolocation behavior of bats. In order to solve binary UC problem, the real valued bat search process is mapped to binary search space using sigmoidal transformation function. The BBSA is then applied to test system with 10 thermal units. The effectiveness of the BBSA is verified against system dimension using test systems upto 100 units. Extensive numerical experiments are performed to test the effectiveness of BBSA and statistical analysis of simulation results are presented. The simulation results are presented, discussed and compared to various existing classical and heuristic approaches. The same demonstrate the superior performance of BBSA approach in solving UC problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信