色散信道的OFDM帧同步

Daniel Landström, N. Petersson, Per Ödling, P. Börjesson
{"title":"色散信道的OFDM帧同步","authors":"Daniel Landström, N. Petersson, Per Ödling, P. Börjesson","doi":"10.1109/ISSPA.2001.950217","DOIUrl":null,"url":null,"abstract":"We address time synchronization in an OFDM system and present an ML estimator that also is unbiased for dispersive channels. The estimator uses the redundancy introduced by the cyclic prefix and knowledge of the channel. Previously presented estimators based on the cyclic prefix are either biased or have high complexity for this environment. We show that with proper choice of signal model, the complexity can be reduced considerably while maintaining the performance. Part of the novelty lies in the proper decomposition of correlation matrices that appear in the ML estimator. The new estimator structure consists of a linear filter, followed by an auto-correlating filterbank and a maximization.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"OFDM frame synchronization for dispersive channels\",\"authors\":\"Daniel Landström, N. Petersson, Per Ödling, P. Börjesson\",\"doi\":\"10.1109/ISSPA.2001.950217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address time synchronization in an OFDM system and present an ML estimator that also is unbiased for dispersive channels. The estimator uses the redundancy introduced by the cyclic prefix and knowledge of the channel. Previously presented estimators based on the cyclic prefix are either biased or have high complexity for this environment. We show that with proper choice of signal model, the complexity can be reduced considerably while maintaining the performance. Part of the novelty lies in the proper decomposition of correlation matrices that appear in the ML estimator. The new estimator structure consists of a linear filter, followed by an auto-correlating filterbank and a maximization.\",\"PeriodicalId\":236050,\"journal\":{\"name\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2001.950217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.950217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们解决了OFDM系统中的时间同步问题,并提出了一个对色散信道也是无偏的ML估计器。该估计器利用循环前缀和信道知识引入的冗余。以前提出的基于循环前缀的估计方法在这种环境下要么有偏差,要么具有很高的复杂性。结果表明,通过选择合适的信号模型,可以在保持系统性能的前提下大大降低系统的复杂度。部分新颖性在于对ML估计器中出现的相关矩阵的适当分解。新的估计器结构由一个线性滤波器、一个自相关滤波器组和一个最大值组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OFDM frame synchronization for dispersive channels
We address time synchronization in an OFDM system and present an ML estimator that also is unbiased for dispersive channels. The estimator uses the redundancy introduced by the cyclic prefix and knowledge of the channel. Previously presented estimators based on the cyclic prefix are either biased or have high complexity for this environment. We show that with proper choice of signal model, the complexity can be reduced considerably while maintaining the performance. Part of the novelty lies in the proper decomposition of correlation matrices that appear in the ML estimator. The new estimator structure consists of a linear filter, followed by an auto-correlating filterbank and a maximization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信